$( x^{2} + x + 1 )^{8} + 2 x ( x^{2} + x + 1 )^{7} + 2$
|
| Base field: | $\Q_{2}$
|
| Degree $d$: | $16$ |
| Ramification index $e$: | $8$ |
| Residue field degree $f$: | $2$ |
| Discriminant exponent $c$: | $28$ |
| Discriminant root field: | $\Q_{2}$ |
| Root number: | $1$ |
| $\Aut(K/\Q_{2})$:
|
$C_2$ |
| This field is not Galois over $\Q_{2}.$ |
| Visible Artin slopes: | $[2, 2, 2]$ |
| Visible Swan slopes: | $[1,1,1]$ |
| Means: | $\langle\frac{1}{2}, \frac{3}{4}, \frac{7}{8}\rangle$ |
| Rams: | $(1, 1, 1)$ |
| Jump set: | $[1, 3, 7, 15]$ |
| Roots of unity: | $6 = (2^{ 2 } - 1) \cdot 2$ |
Fields in the database are given up to isomorphism. Isomorphic
intermediate fields are shown with their multiplicities.
| Galois degree: |
$384$
|
| Galois group: |
$C_2\wr C_6$ (as 16T719)
|
| Inertia group: |
Intransitive group isomorphic to $C_2^6$
|
| Wild inertia group: |
$C_2^6$
|
| Galois unramified degree: |
$6$
|
| Galois tame degree: |
$1$
|
| Galois Artin slopes: |
$[2, 2, 2, 2, 2, 2]$
|
| Galois Swan slopes: |
$[1,1,1,1,1,1]$
|
| Galois mean slope: |
$1.96875$
|
| Galois splitting model: |
$x^{16} - 4 x^{15} + 12 x^{14} - 12 x^{13} + 20 x^{12} - 184 x^{11} + 116 x^{10} - 12 x^{9} - 108 x^{8} + 328 x^{7} - 240 x^{5} + 12 x^{4} + 68 x^{3} - 8 x - 1$
|