Properties

Label 2.2.8.28a10.2
Base \(\Q_{2}\)
Degree \(16\)
e \(8\)
f \(2\)
c \(28\)
Galois group $\OD_{16}:C_2$ (as 16T41)

Related objects

Downloads

Learn more

Defining polynomial

$( x^{2} + x + 1 )^{8} + 2 ( x^{2} + x + 1 )^{7} + 2 ( x^{2} + x + 1 )^{6} + 2 ( x^{2} + x + 1 )^{4} + 4 x + 2$ Copy content Toggle raw display

Invariants

Base field: $\Q_{2}$
Degree $d$: $16$
Ramification index $e$: $8$
Residue field degree $f$: $2$
Discriminant exponent $c$: $28$
Discriminant root field: $\Q_{2}$
Root number: $1$
$\Aut(K/\Q_{2})$: $C_2^2$
This field is not Galois over $\Q_{2}.$
Visible Artin slopes:$[2, 2, 2]$
Visible Swan slopes:$[1,1,1]$
Means:$\langle\frac{1}{2}, \frac{3}{4}, \frac{7}{8}\rangle$
Rams:$(1, 1, 1)$
Jump set:$[1, 2, 7, 16]$
Roots of unity:$6 = (2^{ 2 } - 1) \cdot 2$

Intermediate fields

$\Q_{2}(\sqrt{5})$, 2.2.2.4a1.2, 2.2.2.4a2.2, 2.2.2.4a2.1, 2.2.4.12a1.2, 2.2.4.12a6.2 x2

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Canonical tower

Unramified subfield:$\Q_{2}(\sqrt{5})$ $\cong \Q_{2}(t)$ where $t$ is a root of \( x^{2} + x + 1 \) Copy content Toggle raw display
Relative Eisenstein polynomial: \( x^{8} + 2 x^{7} + 2 x^{6} + 2 x^{4} + 4 t + 2 \) $\ \in\Q_{2}(t)[x]$ Copy content Toggle raw display

Ramification polygon

Residual polynomials:$z^7 + z^3 + z + 1$
Associated inertia:$2$
Indices of inseparability:$[7, 6, 4, 0]$

Invariants of the Galois closure

Galois degree: $32$
Galois group: $\OD_{16}:C_2$ (as 16T41)
Inertia group: Intransitive group isomorphic to $C_2^3$
Wild inertia group: $C_2^3$
Galois unramified degree: $4$
Galois tame degree: $1$
Galois Artin slopes: $[2, 2, 2]$
Galois Swan slopes: $[1,1,1]$
Galois mean slope: $1.75$
Galois splitting model:$x^{16} - 4 x^{15} + 6 x^{14} - 6 x^{13} + 8 x^{12} - 14 x^{11} + 4 x^{10} - 8 x^{9} + 3 x^{8} + 6 x^{7} - 24 x^{6} + 12 x^{5} - 2 x^{4} + 2 x^{3} - 6 x^{2} + 2 x + 1$