Properties

Label 2.2.8.24a2.2
Base \(\Q_{2}\)
Degree \(16\)
e \(8\)
f \(2\)
c \(24\)
Galois group $C_2^3:F_8:C_6$ (as 16T1501)

Related objects

Downloads

Learn more

Defining polynomial

$( x^{2} + x + 1 )^{8} + \left(2 x + 2\right) ( x^{2} + x + 1 )^{5} + 2 x ( x^{2} + x + 1 )^{4} + 2$ Copy content Toggle raw display

Invariants

Base field: $\Q_{2}$
Degree $d$: $16$
Ramification index $e$: $8$
Residue field degree $f$: $2$
Discriminant exponent $c$: $24$
Discriminant root field: $\Q_{2}$
Root number: $1$
$\Aut(K/\Q_{2})$: $C_1$
This field is not Galois over $\Q_{2}.$
Visible Artin slopes:$[\frac{12}{7}, \frac{12}{7}, \frac{12}{7}]$
Visible Swan slopes:$[\frac{5}{7},\frac{5}{7},\frac{5}{7}]$
Means:$\langle\frac{5}{14}, \frac{15}{28}, \frac{5}{8}\rangle$
Rams:$(\frac{5}{7}, \frac{5}{7}, \frac{5}{7})$
Jump set:$[1, 3, 6, 13]$
Roots of unity:$6 = (2^{ 2 } - 1) \cdot 2$

Intermediate fields

$\Q_{2}(\sqrt{5})$

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Canonical tower

Unramified subfield:$\Q_{2}(\sqrt{5})$ $\cong \Q_{2}(t)$ where $t$ is a root of \( x^{2} + x + 1 \) Copy content Toggle raw display
Relative Eisenstein polynomial: \( x^{8} + 2 t x^{5} + 2 t x^{4} + 2 \) $\ \in\Q_{2}(t)[x]$ Copy content Toggle raw display

Ramification polygon

Residual polynomials:$z + t$
Associated inertia:$1$
Indices of inseparability:$[5, 5, 4, 0]$

Invariants of the Galois closure

Galois degree: $2688$
Galois group: $C_2^3:F_8:C_6$ (as 16T1501)
Inertia group: not computed
Wild inertia group: not computed
Galois unramified degree: not computed
Galois tame degree: not computed
Galois Artin slopes: not computed
Galois Swan slopes: not computed
Galois mean slope: not computed
Galois splitting model:not computed