Properties

Label 2.2.8.20b5.1
Base \(\Q_{2}\)
Degree \(16\)
e \(8\)
f \(2\)
c \(20\)
Galois group $C_2^7.A_4\wr C_2$ (as 16T1825)

Related objects

Downloads

Learn more

Defining polynomial

$( x^{2} + x + 1 )^{8} + 2 x ( x^{2} + x + 1 )^{3} + 2 x ( x^{2} + x + 1 )^{2} + 2$ Copy content Toggle raw display

Invariants

Base field: $\Q_{2}$
Degree $d$: $16$
Ramification index $e$: $8$
Residue field degree $f$: $2$
Discriminant exponent $c$: $20$
Discriminant root field: $\Q_{2}(\sqrt{5})$
Root number: $1$
$\Aut(K/\Q_{2})$: $C_2$
This field is not Galois over $\Q_{2}.$
Visible Artin slopes:$[\frac{4}{3}, \frac{4}{3}, \frac{3}{2}]$
Visible Swan slopes:$[\frac{1}{3},\frac{1}{3},\frac{1}{2}]$
Means:$\langle\frac{1}{6}, \frac{1}{4}, \frac{3}{8}\rangle$
Rams:$(\frac{1}{3}, \frac{1}{3}, 1)$
Jump set:$[1, 2, 5, 11]$
Roots of unity:$6 = (2^{ 2 } - 1) \cdot 2$

Intermediate fields

$\Q_{2}(\sqrt{5})$, 2.2.4.8a2.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Canonical tower

Unramified subfield:$\Q_{2}(\sqrt{5})$ $\cong \Q_{2}(t)$ where $t$ is a root of \( x^{2} + x + 1 \) Copy content Toggle raw display
Relative Eisenstein polynomial: \( x^{8} + \left(2 t + 2\right) x^{3} + 2 t x^{2} + 2 \) $\ \in\Q_{2}(t)[x]$ Copy content Toggle raw display

Ramification polygon

Residual polynomials:$z^2 + t$,$t z + (t + 1)$
Associated inertia:$1$,$1$
Indices of inseparability:$[3, 2, 2, 0]$

Invariants of the Galois closure

Galois degree: $36864$
Galois group: $C_2^7.A_4\wr C_2$ (as 16T1825)
Inertia group: not computed
Wild inertia group: not computed
Galois unramified degree: not computed
Galois tame degree: not computed
Galois Artin slopes: not computed
Galois Swan slopes: not computed
Galois mean slope: not computed
Galois splitting model:not computed