$( x^{2} + x + 1 )^{8} + 2 x ( x^{2} + x + 1 )^{3} + 2 x ( x^{2} + x + 1 )^{2} + 2$
|
| Base field: | $\Q_{2}$
|
| Degree $d$: | $16$ |
| Ramification index $e$: | $8$ |
| Residue field degree $f$: | $2$ |
| Discriminant exponent $c$: | $20$ |
| Discriminant root field: | $\Q_{2}(\sqrt{5})$ |
| Root number: | $1$ |
| $\Aut(K/\Q_{2})$:
|
$C_2$ |
| This field is not Galois over $\Q_{2}.$ |
| Visible Artin slopes: | $[\frac{4}{3}, \frac{4}{3}, \frac{3}{2}]$ |
| Visible Swan slopes: | $[\frac{1}{3},\frac{1}{3},\frac{1}{2}]$ |
| Means: | $\langle\frac{1}{6}, \frac{1}{4}, \frac{3}{8}\rangle$ |
| Rams: | $(\frac{1}{3}, \frac{1}{3}, 1)$ |
| Jump set: | $[1, 2, 5, 11]$ |
| Roots of unity: | $6 = (2^{ 2 } - 1) \cdot 2$ |
Fields in the database are given up to isomorphism. Isomorphic
intermediate fields are shown with their multiplicities.
| Unramified subfield: | $\Q_{2}(\sqrt{5})$ $\cong \Q_{2}(t)$ where $t$ is a root of
\( x^{2} + x + 1 \)
|
| Relative Eisenstein polynomial: |
\( x^{8} + \left(2 t + 2\right) x^{3} + 2 t x^{2} + 2 \)
$\ \in\Q_{2}(t)[x]$
|