Properties

Label 2.2.8.16a1.1
Base \(\Q_{2}\)
Degree \(16\)
e \(8\)
f \(2\)
c \(16\)
Galois group $F_8:C_6$ (as 16T712)

Related objects

Downloads

Learn more

Defining polynomial

$( x^{2} + x + 1 )^{8} + 2 ( x^{2} + x + 1 ) + 2$ Copy content Toggle raw display

Invariants

Base field: $\Q_{2}$
Degree $d$: $16$
Ramification index $e$: $8$
Residue field degree $f$: $2$
Discriminant exponent $c$: $16$
Discriminant root field: $\Q_{2}$
Root number: $1$
$\Aut(K/\Q_{2})$: $C_2$
This field is not Galois over $\Q_{2}.$
Visible Artin slopes:$[\frac{8}{7}, \frac{8}{7}, \frac{8}{7}]$
Visible Swan slopes:$[\frac{1}{7},\frac{1}{7},\frac{1}{7}]$
Means:$\langle\frac{1}{14}, \frac{3}{28}, \frac{1}{8}\rangle$
Rams:$(\frac{1}{7}, \frac{1}{7}, \frac{1}{7})$
Jump set:$[1, 2, 4, 9]$
Roots of unity:$6 = (2^{ 2 } - 1) \cdot 2$

Intermediate fields

$\Q_{2}(\sqrt{5})$, 2.1.8.8a1.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Canonical tower

Unramified subfield:$\Q_{2}(\sqrt{5})$ $\cong \Q_{2}(t)$ where $t$ is a root of \( x^{2} + x + 1 \) Copy content Toggle raw display
Relative Eisenstein polynomial: \( x^{8} + 2 x + 2 \) $\ \in\Q_{2}(t)[x]$ Copy content Toggle raw display

Ramification polygon

Residual polynomials:$z + 1$
Associated inertia:$1$
Indices of inseparability:$[1, 1, 1, 0]$

Invariants of the Galois closure

Galois degree: $336$
Galois group: $F_8:C_6$ (as 16T712)
Inertia group: Intransitive group isomorphic to $F_8$
Wild inertia group: $C_2^3$
Galois unramified degree: $6$
Galois tame degree: $7$
Galois Artin slopes: $[\frac{8}{7}, \frac{8}{7}, \frac{8}{7}]$
Galois Swan slopes: $[\frac{1}{7},\frac{1}{7},\frac{1}{7}]$
Galois mean slope: $1.1071428571428572$
Galois splitting model: $x^{16} - 4 x^{15} + 2 x^{14} - 28 x^{13} + 126 x^{12} - 56 x^{11} + 140 x^{10} - 1038 x^{9} + 407 x^{8} + 752 x^{7} + 588 x^{6} + 434 x^{5} + 238 x^{4} - 84 x^{3} - 10 x^{2} - 2 x + 1$ Copy content Toggle raw display