Properties

Label 2.2.10.38a1.39
Base \(\Q_{2}\)
Degree \(20\)
e \(10\)
f \(2\)
c \(38\)
Galois group $C_2^6:F_5$ (as 20T192)

Related objects

Downloads

Learn more

Defining polynomial

$( x^{2} + x + 1 )^{10} + 4 x ( x^{2} + x + 1 )^{9} + 4 ( x^{2} + x + 1 )^{7} + 4 x ( x^{2} + x + 1 )^{5} + 2$ Copy content Toggle raw display

Invariants

Base field: $\Q_{2}$
Degree $d$: $20$
Ramification index $e$: $10$
Residue field degree $f$: $2$
Discriminant exponent $c$: $38$
Discriminant root field: $\Q_{2}(\sqrt{-1})$
Root number: $i$
$\Aut(K/\Q_{2})$: $C_2$
This field is not Galois over $\Q_{2}.$
Visible Artin slopes:$[3]$
Visible Swan slopes:$[2]$
Means:$\langle1\rangle$
Rams:$(10)$
Jump set:$[5, 15]$
Roots of unity:$6 = (2^{ 2 } - 1) \cdot 2$

Intermediate fields

$\Q_{2}(\sqrt{5})$, 2.1.5.4a1.1, 2.2.5.8a1.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Canonical tower

Unramified subfield:$\Q_{2}(\sqrt{5})$ $\cong \Q_{2}(t)$ where $t$ is a root of \( x^{2} + x + 1 \) Copy content Toggle raw display
Relative Eisenstein polynomial: \( x^{10} + 4 t x^{9} + 4 t x^{5} + 2 \) $\ \in\Q_{2}(t)[x]$ Copy content Toggle raw display

Ramification polygon

Residual polynomials:$z^8 + z^6 + 1$,$z + 1$
Associated inertia:$2$,$1$
Indices of inseparability:$[10, 0]$

Invariants of the Galois closure

Galois degree: $1280$
Galois group: $C_2^6:F_5$ (as 20T192)
Inertia group: not computed
Wild inertia group: not computed
Galois unramified degree: not computed
Galois tame degree: not computed
Galois Artin slopes: not computed
Galois Swan slopes: not computed
Galois mean slope: not computed
Galois splitting model:not computed