Properties

Label 2.12.33.119
Base \(\Q_{2}\)
Degree \(12\)
e \(4\)
f \(3\)
c \(33\)
Galois group $C_2^4.(C_2\times A_4)$ (as 12T143)

Related objects

Downloads

Learn more

Defining polynomial

\(x^{12} - 16 x^{11} + 84 x^{10} + 376 x^{9} + 2042 x^{8} + 2400 x^{7} + 2832 x^{6} + 6240 x^{5} + 13628 x^{4} + 13184 x^{3} + 17552 x^{2} + 8672 x + 4056\) Copy content Toggle raw display

Invariants

Base field: $\Q_{2}$
Degree $d$: $12$
Ramification exponent $e$: $4$
Residue field degree $f$: $3$
Discriminant exponent $c$: $33$
Discriminant root field: $\Q_{2}(\sqrt{2})$
Root number: $1$
$\card{ \Aut(K/\Q_{ 2 }) }$: $2$
This field is not Galois over $\Q_{2}.$
Visible slopes:$[3, 4]$

Intermediate fields

2.3.0.1, 2.6.9.8

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Unramified/totally ramified tower

Unramified subfield:2.3.0.1 $\cong \Q_{2}(t)$ where $t$ is a root of \( x^{3} + x + 1 \) Copy content Toggle raw display
Relative Eisenstein polynomial: \( x^{4} + 8 t^{2} x^{3} + \left(8 t^{2} + 4 t + 12\right) x^{2} + 8 x + 8 t^{2} + 20 t + 14 \) $\ \in\Q_{2}(t)[x]$ Copy content Toggle raw display

Ramification polygon

Residual polynomials:$z + 1$,$z^{2} + 1$
Associated inertia:$1$,$1$
Indices of inseparability:$[8, 4, 0]$

Invariants of the Galois closure

Galois group:$C_2^4.(C_2\times A_4)$ (as 12T143)
Inertia group:Intransitive group isomorphic to $C_2.D_4^2$
Wild inertia group:$C_2.D_4^2$
Unramified degree:$3$
Tame degree:$1$
Wild slopes:$[2, 2, 2, 3, 7/2, 7/2, 4]$
Galois mean slope:$231/64$
Galois splitting model: $x^{12} - 84 x^{10} + 840 x^{8} + 27832 x^{6} - 659148 x^{4} + 5120304 x^{2} - 13832504$ Copy content Toggle raw display