Properties

Label 2.12.18.54
Base \(\Q_{2}\)
Degree \(12\)
e \(4\)
f \(3\)
c \(18\)
Galois group $C_2^3:A_4$ (as 12T59)

Related objects

Downloads

Learn more

Defining polynomial

\(x^{12} + 2 x^{11} + 18 x^{10} + 36 x^{9} + 82 x^{8} + 64 x^{7} + 128 x^{6} + 72 x^{5} + 108 x^{4} + 72 x^{3} + 72 x^{2} + 216\) Copy content Toggle raw display

Invariants

Base field: $\Q_{2}$
Degree $d$: $12$
Ramification exponent $e$: $4$
Residue field degree $f$: $3$
Discriminant exponent $c$: $18$
Discriminant root field: $\Q_{2}(\sqrt{5})$
Root number: $-1$
$\card{ \Aut(K/\Q_{ 2 }) }$: $2$
This field is not Galois over $\Q_{2}.$
Visible slopes:$[2, 2]$

Intermediate fields

2.3.0.1, 2.6.6.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Unramified/totally ramified tower

Unramified subfield:2.3.0.1 $\cong \Q_{2}(t)$ where $t$ is a root of \( x^{3} + x + 1 \) Copy content Toggle raw display
Relative Eisenstein polynomial: \( x^{4} + \left(2 t^{2} + 2 t + 2\right) x^{3} + \left(2 t^{2} + 2\right) x^{2} + 6 \) $\ \in\Q_{2}(t)[x]$ Copy content Toggle raw display

Ramification polygon

Residual polynomials:$z^{3} + (t^{2} + 1)z + t^{2} + t + 1$
Associated inertia:$2$
Indices of inseparability:$[3, 2, 0]$

Invariants of the Galois closure

Galois group:$C_2^3:A_4$ (as 12T59)
Inertia group:Intransitive group isomorphic to $C_2^4$
Wild inertia group:$C_2^4$
Unramified degree:$6$
Tame degree:$1$
Wild slopes:$[2, 2, 2, 2]$
Galois mean slope:$15/8$
Galois splitting model:$x^{12} - 2 x^{11} - 6 x^{10} - 4 x^{9} + 38 x^{8} + 16 x^{7} - 32 x^{6} + 8 x^{5} + 44 x^{4} - 8 x^{3} + 40 x^{2} + 8$