Properties

Label 2.11.2.33a1.4
Base \(\Q_{2}\)
Degree \(22\)
e \(2\)
f \(11\)
c \(33\)
Galois group not computed

Related objects

Downloads

Learn more

Defining polynomial

$( x^{11} + x^{2} + 1 )^{2} + 4 x^{9} ( x^{11} + x^{2} + 1 ) + 10$ Copy content Toggle raw display

Invariants

Base field: $\Q_{2}$
Degree $d$: $22$
Ramification index $e$: $2$
Residue field degree $f$: $11$
Discriminant exponent $c$: $33$
Discriminant root field: $\Q_{2}(\sqrt{2\cdot 5})$
Root number: $1$
$\Aut(K/\Q_{2})$: $C_2$
Visible Artin slopes:$[3]$
Visible Swan slopes:$[2]$
Means:$\langle1\rangle$
Rams:$(2)$
Jump set:$[1, 3]$
Roots of unity:$4094 = (2^{ 11 } - 1) \cdot 2$

Intermediate fields

2.11.1.0a1.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Canonical tower

Unramified subfield:2.11.1.0a1.1 $\cong \Q_{2}(t)$ where $t$ is a root of \( x^{11} + x^{2} + 1 \) Copy content Toggle raw display
Relative Eisenstein polynomial: \( x^{2} + \left(4 t^{9} + 4 t^{7}\right) x + 10 \) $\ \in\Q_{2}(t)[x]$ Copy content Toggle raw display

Ramification polygon

Residual polynomials:$z + (t^9 + t^2 + 1)$
Associated inertia:$1$
Indices of inseparability:$[2, 0]$

Invariants of the Galois closure

Galois degree: not computed
Galois group: not computed
Inertia group: not computed
Wild inertia group: not computed
Galois unramified degree: not computed
Galois tame degree: not computed
Galois Artin slopes: not computed
Galois Swan slopes: not computed
Galois mean slope: not computed
Galois splitting model:not computed