Properties

Label 2.11.2.22a9.2
Base \(\Q_{2}\)
Degree \(22\)
e \(2\)
f \(11\)
c \(22\)
Galois group not computed

Related objects

Downloads

Learn more

Defining polynomial

$( x^{11} + x^{2} + 1 )^{2} + 2 x^{5} ( x^{11} + x^{2} + 1 ) + 4 x^{10} + 2$ Copy content Toggle raw display

Invariants

Base field: $\Q_{2}$
Degree $d$: $22$
Ramification index $e$: $2$
Residue field degree $f$: $11$
Discriminant exponent $c$: $22$
Discriminant root field: $\Q_{2}(\sqrt{5})$
Root number: $-1$
$\Aut(K/\Q_{2})$: $C_2$
Visible Artin slopes:$[2]$
Visible Swan slopes:$[1]$
Means:$\langle\frac{1}{2}\rangle$
Rams:$(1)$
Jump set:$[1, 3]$
Roots of unity:$4094 = (2^{ 11 } - 1) \cdot 2$

Intermediate fields

2.11.1.0a1.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Canonical tower

Unramified subfield:2.11.1.0a1.1 $\cong \Q_{2}(t)$ where $t$ is a root of \( x^{11} + x^{2} + 1 \) Copy content Toggle raw display
Relative Eisenstein polynomial: \( x^{2} + \left(2 t^{9} + 2 t^{8} + 2 t^{7} + 2 t^{5} + 2 t^{3} + 2\right) x + 4 t^{3} + 2 \) $\ \in\Q_{2}(t)[x]$ Copy content Toggle raw display

Ramification polygon

Residual polynomials:$z + (t^6 + t^4)$
Associated inertia:$1$
Indices of inseparability:$[1, 0]$

Invariants of the Galois closure

Galois degree: not computed
Galois group: not computed
Inertia group: not computed
Wild inertia group: not computed
Galois unramified degree: not computed
Galois tame degree: not computed
Galois Artin slopes: not computed
Galois Swan slopes: not computed
Galois mean slope: not computed
Galois splitting model:not computed