Defining polynomial
$( x^{11} + x^{2} + 1 )^{2} + 2 x^{5} ( x^{11} + x^{2} + 1 ) + 4 x^{10} + 2$
|
Invariants
Base field: | $\Q_{2}$ |
Degree $d$: | $22$ |
Ramification index $e$: | $2$ |
Residue field degree $f$: | $11$ |
Discriminant exponent $c$: | $22$ |
Discriminant root field: | $\Q_{2}(\sqrt{5})$ |
Root number: | $-1$ |
$\Aut(K/\Q_{2})$: | $C_2$ |
Visible Artin slopes: | $[2]$ |
Visible Swan slopes: | $[1]$ |
Means: | $\langle\frac{1}{2}\rangle$ |
Rams: | $(1)$ |
Jump set: | $[1, 3]$ |
Roots of unity: | $4094 = (2^{ 11 } - 1) \cdot 2$ |
Intermediate fields
2.11.1.0a1.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Canonical tower
Unramified subfield: | 2.11.1.0a1.1 $\cong \Q_{2}(t)$ where $t$ is a root of
\( x^{11} + x^{2} + 1 \)
|
Relative Eisenstein polynomial: |
\( x^{2} + \left(2 t^{9} + 2 t^{8} + 2 t^{7} + 2 t^{5} + 2 t^{3} + 2\right) x + 4 t^{3} + 2 \)
$\ \in\Q_{2}(t)[x]$
|
Ramification polygon
Residual polynomials: | $z + (t^6 + t^4)$ |
Associated inertia: | $1$ |
Indices of inseparability: | $[1, 0]$ |
Invariants of the Galois closure
Galois degree: | not computed |
Galois group: | not computed |
Inertia group: | not computed |
Wild inertia group: | not computed |
Galois unramified degree: | not computed |
Galois tame degree: | not computed |
Galois Artin slopes: | not computed |
Galois Swan slopes: | not computed |
Galois mean slope: | not computed |
Galois splitting model: | not computed |