Properties

Label 2.1.8.24b2.1
Base \(\Q_{2}\)
Degree \(8\)
e \(8\)
f \(1\)
c \(24\)
Galois group $C_2^4:C_6$ (as 8T33)

Related objects

Downloads

Learn more

Defining polynomial

\(x^{8} + 4 x^{6} + 8 x + 2\) Copy content Toggle raw display

Invariants

Base field: $\Q_{2}$
Degree $d$: $8$
Ramification index $e$: $8$
Residue field degree $f$: $1$
Discriminant exponent $c$: $24$
Discriminant root field: $\Q_{2}$
Root number: $1$
$\Aut(K/\Q_{2})$: $C_1$
This field is not Galois over $\Q_{2}.$
Visible Artin slopes:$[3, \frac{7}{2}, \frac{7}{2}]$
Visible Swan slopes:$[2,\frac{5}{2},\frac{5}{2}]$
Means:$\langle1, \frac{7}{4}, \frac{17}{8}\rangle$
Rams:$(2, 3, 3)$
Jump set:$[1, 3, 7, 15]$
Roots of unity:$2$

Intermediate fields

$\Q_{2}(\sqrt{2})$

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Canonical tower

Unramified subfield:$\Q_{2}$
Relative Eisenstein polynomial: \( x^{8} + 4 x^{6} + 8 x + 2 \) Copy content Toggle raw display

Ramification polygon

Residual polynomials:$z^4 + 1$,$z^3 + z + 1$
Associated inertia:$1$,$3$
Indices of inseparability:$[17, 14, 8, 0]$

Invariants of the Galois closure

Galois degree: $96$
Galois group: $C_2^3:A_4$ (as 8T33)
Inertia group: $C_2^2\wr C_2$ (as 8T18)
Wild inertia group: $C_2^2\wr C_2$
Galois unramified degree: $3$
Galois tame degree: $1$
Galois Artin slopes: $[2, 2, 3, \frac{7}{2}, \frac{7}{2}]$
Galois Swan slopes: $[1,1,2,\frac{5}{2},\frac{5}{2}]$
Galois mean slope: $3.1875$
Galois splitting model:$x^{8} - 8 x^{6} - 8 x^{5} + 42 x^{4} - 8 x^{3} - 16 x^{2} - 24 x + 23$