Properties

Label 2.1.22.42a1.48
Base \(\Q_{2}\)
Degree \(22\)
e \(22\)
f \(1\)
c \(42\)
Galois group $C_2\times C_2^{10}.F_{11}$ (as 22T37)

Related objects

Downloads

Learn more

Defining polynomial

\(x^{22} + 2 x^{21} + 4 x^{20} + 4 x^{19} + 4 x^{17} + 4 x^{15} + 4 x^{11} + 2\) Copy content Toggle raw display

Invariants

Base field: $\Q_{2}$
Degree $d$: $22$
Ramification index $e$: $22$
Residue field degree $f$: $1$
Discriminant exponent $c$: $42$
Discriminant root field: $\Q_{2}(\sqrt{-1})$
Root number: $i$
$\Aut(K/\Q_{2})$: $C_2$
This field is not Galois over $\Q_{2}.$
Visible Artin slopes:$[\frac{32}{11}]$
Visible Swan slopes:$[\frac{21}{11}]$
Means:$\langle\frac{21}{22}\rangle$
Rams:$(21)$
Jump set:$[11, 33]$
Roots of unity:$2$

Intermediate fields

2.1.11.10a1.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Canonical tower

Unramified subfield:$\Q_{2}$
Relative Eisenstein polynomial: \( x^{22} + 2 x^{21} + 4 x^{20} + 4 x^{19} + 4 x^{17} + 4 x^{15} + 4 x^{11} + 2 \) Copy content Toggle raw display

Ramification polygon

Residual polynomials:$z^{20} + z^{18} + z^{16} + z^{14} + z^4 + z^2 + 1$,$z + 1$
Associated inertia:$10$,$1$
Indices of inseparability:$[21, 0]$

Invariants of the Galois closure

Galois degree: $225280$
Galois group: $C_2\times C_2^{10}.F_{11}$ (as 22T37)
Inertia group: not computed
Wild inertia group: not computed
Galois unramified degree: not computed
Galois tame degree: not computed
Galois Artin slopes: not computed
Galois Swan slopes: not computed
Galois mean slope: not computed
Galois splitting model:not computed