Properties

Label 2.1.20.42a1.22
Base \(\Q_{2}\)
Degree \(20\)
e \(20\)
f \(1\)
c \(42\)
Galois group not computed

Related objects

Downloads

Learn more

Defining polynomial

\(x^{20} + 4 x^{10} + 4 x^{7} + 4 x^{5} + 4 x^{3} + 2\) Copy content Toggle raw display

Invariants

Base field: $\Q_{2}$
Degree $d$: $20$
Ramification index $e$: $20$
Residue field degree $f$: $1$
Discriminant exponent $c$: $42$
Discriminant root field: $\Q_{2}(\sqrt{5})$
Root number: $1$
$\Aut(K/\Q_{2})$: $C_1$
Visible Artin slopes:$[\frac{38}{15}, \frac{38}{15}]$
Visible Swan slopes:$[\frac{23}{15},\frac{23}{15}]$
Means:$\langle\frac{23}{30}, \frac{23}{20}\rangle$
Rams:$(\frac{23}{3}, \frac{23}{3})$
Jump set:$[5, 15, 35]$
Roots of unity:$2$

Intermediate fields

2.1.5.4a1.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Canonical tower

Unramified subfield:$\Q_{2}$
Relative Eisenstein polynomial: \( x^{20} + 4 x^{10} + 4 x^{7} + 4 x^{5} + 4 x^{3} + 2 \) Copy content Toggle raw display

Ramification polygon

Residual polynomials:$z^{16} + z^{12} + 1$,$z + 1$
Associated inertia:$4$,$1$
Indices of inseparability:$[23, 20, 0]$

Invariants of the Galois closure

Galois degree: not computed
Galois group: not computed
Inertia group: not computed
Wild inertia group: not computed
Galois unramified degree: not computed
Galois tame degree: not computed
Galois Artin slopes: not computed
Galois Swan slopes: not computed
Galois mean slope: not computed
Galois splitting model:not computed