Properties

Label 2.1.20.30b1.13
Base \(\Q_{2}\)
Degree \(20\)
e \(20\)
f \(1\)
c \(30\)
Galois group $C_2^9.C_2^4:F_5$ (as 20T850)

Related objects

Downloads

Learn more

Defining polynomial

\(x^{20} + 2 x^{13} + 2 x^{11} + 2 x^{2} + 2\) Copy content Toggle raw display

Invariants

Base field: $\Q_{2}$
Degree $d$: $20$
Ramification index $e$: $20$
Residue field degree $f$: $1$
Discriminant exponent $c$: $30$
Discriminant root field: $\Q_{2}$
Root number: $-1$
$\Aut(K/\Q_{2})$: $C_2$
This field is not Galois over $\Q_{2}.$
Visible Artin slopes:$[\frac{6}{5}, 2]$
Visible Swan slopes:$[\frac{1}{5},1]$
Means:$\langle\frac{1}{10}, \frac{11}{20}\rangle$
Rams:$(1, 9)$
Jump set:$[5, 11, 33]$
Roots of unity:$2$

Intermediate fields

2.1.5.4a1.1, 2.1.10.10a1.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Canonical tower

Unramified subfield:$\Q_{2}$
Relative Eisenstein polynomial: \( x^{20} + 2 x^{13} + 2 x^{11} + 2 x^{2} + 2 \) Copy content Toggle raw display

Ramification polygon

Residual polynomials:$z^{16} + z^{12} + 1$,$z^2 + 1$,$z + 1$
Associated inertia:$4$,$1$,$1$
Indices of inseparability:$[11, 2, 0]$

Invariants of the Galois closure

Galois degree: $163840$
Galois group: $C_2^9.C_2^4:F_5$ (as 20T850)
Inertia group: not computed
Wild inertia group: not computed
Galois unramified degree: not computed
Galois tame degree: not computed
Galois Artin slopes: not computed
Galois Swan slopes: not computed
Galois mean slope: not computed
Galois splitting model:not computed