Properties

Label 2.1.16.79a1.34716
Base \(\Q_{2}\)
Degree \(16\)
e \(16\)
f \(1\)
c \(79\)
Galois group $C_2^6.\OD_{16}$ (as 16T1200)

Related objects

Downloads

Learn more

Defining polynomial

\(x^{16} + 32 x^{15} + 32 x^{13} + 16 x^{10} + 4 x^{8} + 16 x^{6} + 32 x^{3} + 2\) Copy content Toggle raw display

Invariants

Base field: $\Q_{2}$
Degree $d$: $16$
Ramification index $e$: $16$
Residue field degree $f$: $1$
Discriminant exponent $c$: $79$
Discriminant root field: $\Q_{2}(\sqrt{2})$
Root number: $1$
$\Aut(K/\Q_{2})$: $C_2$
This field is not Galois over $\Q_{2}.$
Visible Artin slopes:$[3, 4, 5, 6]$
Visible Swan slopes:$[2,3,4,5]$
Means:$\langle1, 2, 3, 4\rangle$
Rams:$(2, 4, 8, 16)$
Jump set:$[1, 3, 7, 15, 31]$
Roots of unity:$2$

Intermediate fields

$\Q_{2}(\sqrt{2})$, 2.1.4.11a1.9, 2.1.8.31a1.149

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Canonical tower

Unramified subfield:$\Q_{2}$
Relative Eisenstein polynomial: \( x^{16} + 32 x^{15} + 32 x^{13} + 16 x^{10} + 4 x^{8} + 16 x^{6} + 32 x^{3} + 2 \) Copy content Toggle raw display

Ramification polygon

Residual polynomials:$z^8 + 1$,$z^4 + 1$,$z^2 + 1$,$z + 1$
Associated inertia:$1$,$1$,$1$,$1$
Indices of inseparability:$[64, 48, 32, 16, 0]$

Invariants of the Galois closure

Galois degree: $1024$
Galois group: $C_2^6.\OD_{16}$ (as 16T1200)
Inertia group: not computed
Wild inertia group: not computed
Galois unramified degree: not computed
Galois tame degree: not computed
Galois Artin slopes: not computed
Galois Swan slopes: not computed
Galois mean slope: not computed
Galois splitting model:not computed