\(x^{16} + 16 x^{15} + 8 x^{14} + 8 x^{12} + 16 x^{11} + 8 x^{10} + 16 x^{7} + 32 x^{4} + 2\)
    
    
    
         
    
    
         
    
  | 
  | Base field: |   $\Q_{2}$
       | 
| Degree $d$: |  $16$ | 
      | Ramification index $e$: |  $16$ | 
      | Residue field degree $f$: |  $1$ | 
      | Discriminant exponent $c$: |  $70$ | 
      | Discriminant root field: |  $\Q_{2}$ | 
      | Root number: |  $1$ | 
        | $\Aut(K/\Q_{2})$:
             |  
      $C_2$ | 
    
      | This field is not Galois over $\Q_{2}.$ | 
      | Visible Artin slopes: | $[3, 4, \frac{17}{4}, \frac{21}{4}]$ | 
      | Visible Swan slopes: | $[2,3,\frac{13}{4},\frac{17}{4}]$ | 
      | Means: | $\langle1, 2, \frac{21}{8}, \frac{55}{16}\rangle$ | 
      | Rams: | $(2, 4, 5, 13)$ | 
      | Jump set: | $[1, 3, 7, 15, 31]$ | 
      | Roots of unity: | $2$ | 
  Fields in the database are given up to isomorphism.  Isomorphic 
  intermediate fields are shown with their multiplicities.
      
    
      | Residual polynomials: | $z^8 + 1$,$z^4 + 1$,$z^2 + 1$,$z + 1$ | 
      | Associated inertia: | $1$,$1$,$1$,$1$ | 
      | Indices of inseparability: | $[55, 42, 32, 16, 0]$ | 
    
  
  | Galois degree: | 
      $256$
     | 
  | Galois group: | 
      $C_4^2.(C_2\times D_4)$ (as 16T662)
     | 
  | Inertia group: | 
      $C_4^2.(C_2\times C_4)$ (as 16T362)
     | 
  | Wild inertia group: | 
    $C_4^2.(C_2\times C_4)$
     | 
  | Galois unramified degree: | 
    $2$
     | 
  | Galois tame degree: | 
    $1$
     | 
  | Galois Artin slopes: | 
    $[2, 3, \frac{7}{2}, 4, \frac{17}{4}, \frac{19}{4}, \frac{21}{4}]$
     | 
| Galois Swan slopes: | 
    $[1,2,\frac{5}{2},3,\frac{13}{4},\frac{15}{4},\frac{17}{4}]$
     | 
  | Galois mean slope: | 
    $4.765625$
     | 
  | Galois splitting model: | $x^{16} + 4 x^{12} + 30 x^{8} - 108 x^{4} + 81$ |