\(x^{16} + 8 x^{14} + 16 x^{12} + 2 x^{8} + 16 x^{7} + 8 x^{6} + 16 x^{4} + 16 x + 6\)
|
| Base field: | $\Q_{2}$
|
| Degree $d$: | $16$ |
| Ramification index $e$: | $16$ |
| Residue field degree $f$: | $1$ |
| Discriminant exponent $c$: | $64$ |
| Discriminant root field: | $\Q_{2}$ |
| Root number: | $1$ |
| $\Aut(K/\Q_{2})$:
|
$C_2$ |
| This field is not Galois over $\Q_{2}.$ |
| Visible Artin slopes: | $[2, \frac{7}{2}, \frac{17}{4}, \frac{19}{4}]$ |
| Visible Swan slopes: | $[1,\frac{5}{2},\frac{13}{4},\frac{15}{4}]$ |
| Means: | $\langle\frac{1}{2}, \frac{3}{2}, \frac{19}{8}, \frac{49}{16}\rangle$ |
| Rams: | $(1, 4, 7, 11)$ |
| Jump set: | $[1, 2, 4, 8, 32]$ |
| Roots of unity: | $2$ |
Fields in the database are given up to isomorphism. Isomorphic
intermediate fields are shown with their multiplicities.
| Residual polynomials: | $z^8 + 1$,$z^4 + 1$,$z^2 + 1$,$z + 1$ |
| Associated inertia: | $1$,$1$,$1$,$1$ |
| Indices of inseparability: | $[49, 38, 24, 8, 0]$ |
| Galois degree: |
$512$
|
| Galois group: |
$C_2^6:D_4$ (as 16T960)
|
| Inertia group: |
$C_2^5.D_4$ (as 16T583)
|
| Wild inertia group: |
$C_2^5.D_4$
|
| Galois unramified degree: |
$2$
|
| Galois tame degree: |
$1$
|
| Galois Artin slopes: |
$[2, 2, 3, \frac{7}{2}, \frac{7}{2}, 4, \frac{17}{4}, \frac{19}{4}]$
|
| Galois Swan slopes: |
$[1,1,2,\frac{5}{2},\frac{5}{2},3,\frac{13}{4},\frac{15}{4}]$
|
| Galois mean slope: |
$4.3359375$
|
| Galois splitting model: |
$x^{16} + 120 x^{14} + 5720 x^{12} - 10560 x^{11} + 120480 x^{10} - 438768 x^{9} + 1406340 x^{8} - 952512 x^{7} - 14530392 x^{6} + 62032080 x^{5} - 31977748 x^{4} - 117345888 x^{3} - 33511488 x^{2} - 5720880 x - 296603$
|