Properties

Label 2.1.16.64j1.1037
Base \(\Q_{2}\)
Degree \(16\)
e \(16\)
f \(1\)
c \(64\)
Galois group $(C_2^2\times C_4^2):Q_8$ (as 16T950)

Related objects

Downloads

Learn more

Defining polynomial

\(x^{16} + 2 x^{8} + 16 x^{7} + 8 x^{6} + 16 x^{3} + 16 x + 6\) Copy content Toggle raw display

Invariants

Base field: $\Q_{2}$
Degree $d$: $16$
Ramification index $e$: $16$
Residue field degree $f$: $1$
Discriminant exponent $c$: $64$
Discriminant root field: $\Q_{2}$
Root number: $-1$
$\Aut(K/\Q_{2})$: $C_2$
This field is not Galois over $\Q_{2}.$
Visible Artin slopes:$[2, \frac{7}{2}, \frac{17}{4}, \frac{19}{4}]$
Visible Swan slopes:$[1,\frac{5}{2},\frac{13}{4},\frac{15}{4}]$
Means:$\langle\frac{1}{2}, \frac{3}{2}, \frac{19}{8}, \frac{49}{16}\rangle$
Rams:$(1, 4, 7, 11)$
Jump set:$[1, 2, 4, 8, 32]$
Roots of unity:$2$

Intermediate fields

$\Q_{2}(\sqrt{-5})$, 2.1.4.9a1.7, 2.1.8.26b1.34

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Canonical tower

Unramified subfield:$\Q_{2}$
Relative Eisenstein polynomial: \( x^{16} + 2 x^{8} + 16 x^{7} + 8 x^{6} + 16 x^{3} + 16 x + 6 \) Copy content Toggle raw display

Ramification polygon

Residual polynomials:$z^8 + 1$,$z^4 + 1$,$z^2 + 1$,$z + 1$
Associated inertia:$1$,$1$,$1$,$1$
Indices of inseparability:$[49, 38, 24, 8, 0]$

Invariants of the Galois closure

Galois degree: $512$
Galois group: $(C_2^2\times C_4^2):Q_8$ (as 16T950)
Inertia group: $C_2^4.C_4^2$ (as 16T582)
Wild inertia group: $C_2^4.C_4^2$
Galois unramified degree: $2$
Galois tame degree: $1$
Galois Artin slopes: $[2, 3, 3, \frac{7}{2}, 4, 4, \frac{17}{4}, \frac{19}{4}]$
Galois Swan slopes: $[1,2,2,\frac{5}{2},3,3,\frac{13}{4},\frac{15}{4}]$
Galois mean slope: $4.375$
Galois splitting model:$x^{16} - 16 x^{13} + 8 x^{12} - 32 x^{11} + 120 x^{10} - 48 x^{9} + 196 x^{8} - 288 x^{7} - 272 x^{6} - 512 x^{5} - 172 x^{4} + 464 x^{3} + 168 x^{2} + 256 x - 107$