Properties

Label 2.1.16.57d1.134
Base \(\Q_{2}\)
Degree \(16\)
e \(16\)
f \(1\)
c \(57\)
Galois group $C_2^6.C_2^3.C_2^2$ (as 16T1372)

Related objects

Downloads

Learn more

Defining polynomial

\(x^{16} + 20 x^{10} + 2 x^{8} + 16 x^{7} + 10\) Copy content Toggle raw display

Invariants

Base field: $\Q_{2}$
Degree $d$: $16$
Ramification index $e$: $16$
Residue field degree $f$: $1$
Discriminant exponent $c$: $57$
Discriminant root field: $\Q_{2}(\sqrt{2\cdot 5})$
Root number: $-1$
$\Aut(K/\Q_{2})$: $C_2$
This field is not Galois over $\Q_{2}.$
Visible Artin slopes:$[2, 3, 3, \frac{37}{8}]$
Visible Swan slopes:$[1,2,2,\frac{29}{8}]$
Means:$\langle\frac{1}{2}, \frac{5}{4}, \frac{13}{8}, \frac{21}{8}\rangle$
Rams:$(1, 3, 3, 16)$
Jump set:$[1, 5, 10, 32, 48]$
Roots of unity:$4 = 2^{ 2 }$

Intermediate fields

$\Q_{2}(\sqrt{-1})$, $\Q_{2}(\sqrt{2\cdot 5})$, $\Q_{2}(\sqrt{-2\cdot 5})$, 2.1.4.8b1.2, 2.1.8.20d1.2

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Canonical tower

Unramified subfield:$\Q_{2}$
Relative Eisenstein polynomial: \( x^{16} + 20 x^{10} + 2 x^{8} + 16 x^{7} + 10 \) Copy content Toggle raw display

Ramification polygon

Residual polynomials:$z^8 + 1$,$z^6 + 1$,$z + 1$
Associated inertia:$1$,$2$,$1$
Indices of inseparability:$[42, 26, 24, 8, 0]$

Invariants of the Galois closure

Galois degree: $2048$
Galois group: $C_2^6.C_2^3.C_2^2$ (as 16T1372)
Inertia group: not computed
Wild inertia group: not computed
Galois unramified degree: not computed
Galois tame degree: not computed
Galois Artin slopes: not computed
Galois Swan slopes: not computed
Galois mean slope: not computed
Galois splitting model:not computed