Defining polynomial
\(x^{16} + 4 x^{12} + 4 x^{10} + 8 x^{9} + 2\)
|
Invariants
Base field: | $\Q_{2}$ |
Degree $d$: | $16$ |
Ramification index $e$: | $16$ |
Residue field degree $f$: | $1$ |
Discriminant exponent $c$: | $56$ |
Discriminant root field: | $\Q_{2}(\sqrt{-5})$ |
Root number: | $-i$ |
$\Aut(K/\Q_{2})$: | $C_2$ |
This field is not Galois over $\Q_{2}.$ | |
Visible Artin slopes: | $[\frac{20}{7}, \frac{20}{7}, \frac{20}{7}, \frac{9}{2}]$ |
Visible Swan slopes: | $[\frac{13}{7},\frac{13}{7},\frac{13}{7},\frac{7}{2}]$ |
Means: | $\langle\frac{13}{14}, \frac{39}{28}, \frac{13}{8}, \frac{41}{16}\rangle$ |
Rams: | $(\frac{13}{7}, \frac{13}{7}, \frac{13}{7}, 15)$ |
Jump set: | $[1, 3, 7, 15, 31]$ |
Roots of unity: | $2$ |
Intermediate fields
2.1.8.20a1.2 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Canonical tower
Unramified subfield: | $\Q_{2}$ |
Relative Eisenstein polynomial: |
\( x^{16} + 4 x^{12} + 4 x^{10} + 8 x^{9} + 2 \)
|
Ramification polygon
Residual polynomials: | $z^2 + 1$,$z + 1$ |
Associated inertia: | $1$,$1$ |
Indices of inseparability: | $[41, 26, 26, 16, 0]$ |
Invariants of the Galois closure
Galois degree: | $43008$ |
Galois group: | $C_2^7.F_8:C_6$ (as 16T1841) |
Inertia group: | not computed |
Wild inertia group: | not computed |
Galois unramified degree: | not computed |
Galois tame degree: | not computed |
Galois Artin slopes: | not computed |
Galois Swan slopes: | not computed |
Galois mean slope: | not computed |
Galois splitting model: | not computed |