Properties

Label 2.1.16.56a1.257
Base \(\Q_{2}\)
Degree \(16\)
e \(16\)
f \(1\)
c \(56\)
Galois group $C_2^7.F_8:C_6$ (as 16T1841)

Related objects

Downloads

Learn more

Defining polynomial

\(x^{16} + 4 x^{12} + 4 x^{10} + 8 x^{9} + 2\) Copy content Toggle raw display

Invariants

Base field: $\Q_{2}$
Degree $d$: $16$
Ramification index $e$: $16$
Residue field degree $f$: $1$
Discriminant exponent $c$: $56$
Discriminant root field: $\Q_{2}(\sqrt{-5})$
Root number: $-i$
$\Aut(K/\Q_{2})$: $C_2$
This field is not Galois over $\Q_{2}.$
Visible Artin slopes:$[\frac{20}{7}, \frac{20}{7}, \frac{20}{7}, \frac{9}{2}]$
Visible Swan slopes:$[\frac{13}{7},\frac{13}{7},\frac{13}{7},\frac{7}{2}]$
Means:$\langle\frac{13}{14}, \frac{39}{28}, \frac{13}{8}, \frac{41}{16}\rangle$
Rams:$(\frac{13}{7}, \frac{13}{7}, \frac{13}{7}, 15)$
Jump set:$[1, 3, 7, 15, 31]$
Roots of unity:$2$

Intermediate fields

2.1.8.20a1.2

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Canonical tower

Unramified subfield:$\Q_{2}$
Relative Eisenstein polynomial: \( x^{16} + 4 x^{12} + 4 x^{10} + 8 x^{9} + 2 \) Copy content Toggle raw display

Ramification polygon

Residual polynomials:$z^2 + 1$,$z + 1$
Associated inertia:$1$,$1$
Indices of inseparability:$[41, 26, 26, 16, 0]$

Invariants of the Galois closure

Galois degree: $43008$
Galois group: $C_2^7.F_8:C_6$ (as 16T1841)
Inertia group: not computed
Wild inertia group: not computed
Galois unramified degree: not computed
Galois tame degree: not computed
Galois Artin slopes: not computed
Galois Swan slopes: not computed
Galois mean slope: not computed
Galois splitting model:not computed