\(x^{16} + 8 x^{15} + 4 x^{14} + 8 x^{11} + 2 x^{8} + 8 x^{7} + 8 x^{6} + 4 x^{4} + 2\)
|
Base field: | $\Q_{2}$
|
Degree $d$: | $16$ |
Ramification index $e$: | $16$ |
Residue field degree $f$: | $1$ |
Discriminant exponent $c$: | $54$ |
Discriminant root field: | $\Q_{2}$ |
Root number: | $1$ |
$\Aut(K/\Q_{2})$:
|
$C_4$ |
This field is not Galois over $\Q_{2}.$ |
Visible Artin slopes: | $[2, 3, \frac{7}{2}, 4]$ |
Visible Swan slopes: | $[1,2,\frac{5}{2},3]$ |
Means: | $\langle\frac{1}{2}, \frac{5}{4}, \frac{15}{8}, \frac{39}{16}\rangle$ |
Rams: | $(1, 3, 5, 9)$ |
Jump set: | $[1, 2, 15, 31, 47]$ |
Roots of unity: | $4 = 2^{ 2 }$ |
Fields in the database are given up to isomorphism. Isomorphic
intermediate fields are shown with their multiplicities.
Residual polynomials: | $z^8 + 1$,$z^4 + 1$,$z^2 + 1$,$z + 1$ |
Associated inertia: | $1$,$1$,$1$,$1$ |
Indices of inseparability: | $[39, 30, 20, 8, 0]$ |
Galois degree: |
$128$
|
Galois group: |
$C_4^2.D_4$ (as 16T380)
|
Inertia group: |
not computed
|
Wild inertia group: |
not computed
|
Galois unramified degree: |
$2$
|
Galois tame degree: |
$1$
|
Galois Artin slopes: |
$[2, 2, 3, \frac{7}{2}, \frac{7}{2}, 4]$
|
Galois Swan slopes: |
$[1,1,2,\frac{5}{2},\frac{5}{2},3]$
|
Galois mean slope: |
$3.59375$
|
Galois splitting model: | not computed |