\(x^{16} + 4 x^{10} + 8 x^{9} + 2 x^{8} + 8 x^{7} + 8 x^{5} + 6\)
|
Base field: | $\Q_{2}$
|
Degree $d$: | $16$ |
Ramification index $e$: | $16$ |
Residue field degree $f$: | $1$ |
Discriminant exponent $c$: | $52$ |
Discriminant root field: | $\Q_{2}$ |
Root number: | $-1$ |
$\Aut(K/\Q_{2})$:
|
$C_2$ |
This field is not Galois over $\Q_{2}.$ |
Visible Artin slopes: | $[2, 3, 3, 4]$ |
Visible Swan slopes: | $[1,2,2,3]$ |
Means: | $\langle\frac{1}{2}, \frac{5}{4}, \frac{13}{8}, \frac{37}{16}\rangle$ |
Rams: | $(1, 3, 3, 11)$ |
Jump set: | $[1, 2, 4, 8, 32]$ |
Roots of unity: | $2$ |
Fields in the database are given up to isomorphism. Isomorphic
intermediate fields are shown with their multiplicities.
Galois degree: |
$512$
|
Galois group: |
$D_4:C_2^3.D_4$ (as 16T918)
|
Inertia group: |
not computed
|
Wild inertia group: |
not computed
|
Galois unramified degree: |
$4$
|
Galois tame degree: |
$1$
|
Galois Artin slopes: |
$[2, 2, 2, 3, 3, \frac{7}{2}, 4]$
|
Galois Swan slopes: |
$[1,1,1,2,2,\frac{5}{2},3]$
|
Galois mean slope: |
$3.546875$
|
Galois splitting model: | not computed |