Defining polynomial
\(x^{16} + 8 x^{13} + 8 x^{11} + 4 x^{10} + 8 x^{9} + 2 x^{8} + 8 x^{5} + 6\)
|
Invariants
Base field: | $\Q_{2}$ |
Degree $d$: | $16$ |
Ramification index $e$: | $16$ |
Residue field degree $f$: | $1$ |
Discriminant exponent $c$: | $52$ |
Discriminant root field: | $\Q_{2}$ |
Root number: | $1$ |
$\Aut(K/\Q_{2})$: | $C_2^2$ |
This field is not Galois over $\Q_{2}.$ | |
Visible Artin slopes: | $[2, 3, 3, 4]$ |
Visible Swan slopes: | $[1,2,2,3]$ |
Means: | $\langle\frac{1}{2}, \frac{5}{4}, \frac{13}{8}, \frac{37}{16}\rangle$ |
Rams: | $(1, 3, 3, 11)$ |
Jump set: | $[1, 2, 4, 8, 32]$ |
Roots of unity: | $2$ |
Intermediate fields
$\Q_{2}(\sqrt{-5})$, 2.1.4.8b1.4, 2.1.8.20d1.7, 2.1.8.24c1.34, 2.1.8.24c1.38 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Canonical tower
Unramified subfield: | $\Q_{2}$ |
Relative Eisenstein polynomial: |
\( x^{16} + 8 x^{13} + 8 x^{11} + 4 x^{10} + 8 x^{9} + 2 x^{8} + 8 x^{5} + 6 \)
|
Ramification polygon
Residual polynomials: | $z^8 + 1$,$z^6 + 1$,$z + 1$ |
Associated inertia: | $1$,$2$,$1$ |
Indices of inseparability: | $[37, 26, 24, 8, 0]$ |
Invariants of the Galois closure
Galois degree: | $128$ |
Galois group: | $C_2^4.D_4$ (as 16T254) |
Inertia group: | $C_4^2:C_2$ (as 16T17) |
Wild inertia group: | $C_4^2:C_2$ |
Galois unramified degree: | $4$ |
Galois tame degree: | $1$ |
Galois Artin slopes: | $[2, 2, 3, 3, 4]$ |
Galois Swan slopes: | $[1,1,2,2,3]$ |
Galois mean slope: | $3.3125$ |
Galois splitting model: |
$x^{16} - 8 x^{15} + 32 x^{14} - 64 x^{13} + 56 x^{12} + 352 x^{11} - 1440 x^{10} + 3168 x^{9} - 3696 x^{8} - 1056 x^{7} + 15200 x^{6} - 36736 x^{5} + 52096 x^{4} - 50432 x^{3} + 35968 x^{2} - 17536 x + 4176$
|