Properties

Label 2.1.16.52k1.185
Base \(\Q_{2}\)
Degree \(16\)
e \(16\)
f \(1\)
c \(52\)
Galois group $C_2^4.D_4$ (as 16T254)

Related objects

Downloads

Learn more

Defining polynomial

\(x^{16} + 8 x^{13} + 8 x^{11} + 4 x^{10} + 8 x^{9} + 2 x^{8} + 8 x^{5} + 6\) Copy content Toggle raw display

Invariants

Base field: $\Q_{2}$
Degree $d$: $16$
Ramification index $e$: $16$
Residue field degree $f$: $1$
Discriminant exponent $c$: $52$
Discriminant root field: $\Q_{2}$
Root number: $1$
$\Aut(K/\Q_{2})$: $C_2^2$
This field is not Galois over $\Q_{2}.$
Visible Artin slopes:$[2, 3, 3, 4]$
Visible Swan slopes:$[1,2,2,3]$
Means:$\langle\frac{1}{2}, \frac{5}{4}, \frac{13}{8}, \frac{37}{16}\rangle$
Rams:$(1, 3, 3, 11)$
Jump set:$[1, 2, 4, 8, 32]$
Roots of unity:$2$

Intermediate fields

$\Q_{2}(\sqrt{-5})$, 2.1.4.8b1.4, 2.1.8.20d1.7, 2.1.8.24c1.34, 2.1.8.24c1.38

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Canonical tower

Unramified subfield:$\Q_{2}$
Relative Eisenstein polynomial: \( x^{16} + 8 x^{13} + 8 x^{11} + 4 x^{10} + 8 x^{9} + 2 x^{8} + 8 x^{5} + 6 \) Copy content Toggle raw display

Ramification polygon

Residual polynomials:$z^8 + 1$,$z^6 + 1$,$z + 1$
Associated inertia:$1$,$2$,$1$
Indices of inseparability:$[37, 26, 24, 8, 0]$

Invariants of the Galois closure

Galois degree: $128$
Galois group: $C_2^4.D_4$ (as 16T254)
Inertia group: $C_4^2:C_2$ (as 16T17)
Wild inertia group: $C_4^2:C_2$
Galois unramified degree: $4$
Galois tame degree: $1$
Galois Artin slopes: $[2, 2, 3, 3, 4]$
Galois Swan slopes: $[1,1,2,2,3]$
Galois mean slope: $3.3125$
Galois splitting model: $x^{16} - 8 x^{15} + 32 x^{14} - 64 x^{13} + 56 x^{12} + 352 x^{11} - 1440 x^{10} + 3168 x^{9} - 3696 x^{8} - 1056 x^{7} + 15200 x^{6} - 36736 x^{5} + 52096 x^{4} - 50432 x^{3} + 35968 x^{2} - 17536 x + 4176$ Copy content Toggle raw display