Defining polynomial
\(x^{16} + 4 x^{14} + 4 x^{10} + 10 x^{8} + 8 x^{7} + 8 x^{3} + 8 x + 2\)
|
Invariants
Base field: | $\Q_{2}$ |
Degree $d$: | $16$ |
Ramification index $e$: | $16$ |
Residue field degree $f$: | $1$ |
Discriminant exponent $c$: | $48$ |
Discriminant root field: | $\Q_{2}$ |
Root number: | $-1$ |
$\Aut(K/\Q_{2})$: | $C_2^2$ |
This field is not Galois over $\Q_{2}.$ | |
Visible Artin slopes: | $[2, 3, 3, \frac{7}{2}]$ |
Visible Swan slopes: | $[1,2,2,\frac{5}{2}]$ |
Means: | $\langle\frac{1}{2}, \frac{5}{4}, \frac{13}{8}, \frac{33}{16}\rangle$ |
Rams: | $(1, 3, 3, 7)$ |
Jump set: | $[1, 5, 15, 31, 47]$ |
Roots of unity: | $4 = 2^{ 2 }$ |
Intermediate fields
$\Q_{2}(\sqrt{-1})$, 2.1.4.8b1.3, 2.1.4.9a1.2, 2.1.4.9a1.3, 2.1.8.20d1.3, 2.1.8.22d1.5, 2.1.8.22d1.2 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Canonical tower
Unramified subfield: | $\Q_{2}$ |
Relative Eisenstein polynomial: |
\( x^{16} + 4 x^{14} + 4 x^{10} + 10 x^{8} + 8 x^{7} + 8 x^{3} + 8 x + 2 \)
|
Ramification polygon
Residual polynomials: | $z^8 + 1$,$z^6 + 1$,$z + 1$ |
Associated inertia: | $1$,$2$,$1$ |
Indices of inseparability: | $[33, 26, 24, 8, 0]$ |
Invariants of the Galois closure
Galois degree: | $128$ |
Galois group: | $C_2^4.D_4$ (as 16T230) |
Inertia group: | $C_2^3:C_4$ (as 16T21) |
Wild inertia group: | $C_2^3:C_4$ |
Galois unramified degree: | $4$ |
Galois tame degree: | $1$ |
Galois Artin slopes: | $[2, 2, 3, 3, \frac{7}{2}]$ |
Galois Swan slopes: | $[1,1,2,2,\frac{5}{2}]$ |
Galois mean slope: | $3.0625$ |
Galois splitting model: |
$x^{16} - 8 x^{14} + 156 x^{12} - 648 x^{10} + 2440 x^{8} + 5952 x^{6} + 4904 x^{4} + 272 x^{2} + 4$
|