Properties

Label 2.1.16.42b2.17
Base \(\Q_{2}\)
Degree \(16\)
e \(16\)
f \(1\)
c \(42\)
Galois group $C_2^8.F_8$ (as 16T1768)

Related objects

Downloads

Learn more

Defining polynomial

\(x^{16} + 2 x^{14} + 2 x^{12} + 4 x^{11} + 8 x + 2\) Copy content Toggle raw display

Invariants

Base field: $\Q_{2}$
Degree $d$: $16$
Ramification index $e$: $16$
Residue field degree $f$: $1$
Discriminant exponent $c$: $42$
Discriminant root field: $\Q_{2}(\sqrt{5})$
Root number: $-1$
$\Aut(K/\Q_{2})$: $C_2$
This field is not Galois over $\Q_{2}.$
Visible Artin slopes:$[2, 2, 2, \frac{7}{2}]$
Visible Swan slopes:$[1,1,1,\frac{5}{2}]$
Means:$\langle\frac{1}{2}, \frac{3}{4}, \frac{7}{8}, \frac{27}{16}\rangle$
Rams:$(1, 1, 1, 13)$
Jump set:$[1, 3, 6, 15, 31]$
Roots of unity:$2$

Intermediate fields

2.1.8.14a2.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Canonical tower

Unramified subfield:$\Q_{2}$
Relative Eisenstein polynomial: \( x^{16} + 2 x^{14} + 2 x^{12} + 4 x^{11} + 8 x + 2 \) Copy content Toggle raw display

Ramification polygon

Residual polynomials:$z^{14} + z^2 + 1$,$z + 1$
Associated inertia:$7$,$1$
Indices of inseparability:$[27, 14, 12, 12, 0]$

Invariants of the Galois closure

Galois degree: $14336$
Galois group: $C_2^8.F_8$ (as 16T1768)
Inertia group: not computed
Wild inertia group: not computed
Galois unramified degree: not computed
Galois tame degree: not computed
Galois Artin slopes: not computed
Galois Swan slopes: not computed
Galois mean slope: not computed
Galois splitting model:not computed