Properties

Label 2.1.16.24e1.2
Base \(\Q_{2}\)
Degree \(16\)
e \(16\)
f \(1\)
c \(24\)
Galois group $C_2^4.\GL(2,3)$ (as 16T1064)

Related objects

Downloads

Learn more

Defining polynomial

\(x^{16} + 2 x^{11} + 2 x^{9} + 2 x^{6} + 2 x^{4} + 2\) Copy content Toggle raw display

Invariants

Base field: $\Q_{2}$
Degree $d$: $16$
Ramification index $e$: $16$
Residue field degree $f$: $1$
Discriminant exponent $c$: $24$
Discriminant root field: $\Q_{2}(\sqrt{5})$
Root number: $1$
$\Aut(K/\Q_{2})$: $C_4$
This field is not Galois over $\Q_{2}.$
Visible Artin slopes:$[\frac{4}{3}, \frac{4}{3}, \frac{3}{2}, \frac{7}{4}]$
Visible Swan slopes:$[\frac{1}{3},\frac{1}{3},\frac{1}{2},\frac{3}{4}]$
Means:$\langle\frac{1}{6}, \frac{1}{4}, \frac{3}{8}, \frac{9}{16}\rangle$
Rams:$(\frac{1}{3}, \frac{1}{3}, 1, 3)$
Jump set:$[1, 2, 5, 11, 25]$
Roots of unity:$2$

Intermediate fields

2.1.4.4a1.1, 2.1.8.10b1.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Canonical tower

Unramified subfield:$\Q_{2}$
Relative Eisenstein polynomial: \( x^{16} + 2 x^{11} + 2 x^{9} + 2 x^{6} + 2 x^{4} + 2 \) Copy content Toggle raw display

Ramification polygon

Residual polynomials:$z^4 + 1$,$z^2 + 1$,$z + 1$
Associated inertia:$1$,$1$,$1$
Indices of inseparability:$[9, 6, 4, 4, 0]$

Invariants of the Galois closure

Galois degree: $768$
Galois group: $C_2^4.\GL(2,3)$ (as 16T1064)
Inertia group: not computed
Wild inertia group: not computed
Galois unramified degree: $4$
Galois tame degree: $3$
Galois Artin slopes: $[\frac{4}{3}, \frac{4}{3}, \frac{3}{2}, \frac{5}{3}, \frac{5}{3}, \frac{7}{4}]$
Galois Swan slopes: $[\frac{1}{3},\frac{1}{3},\frac{1}{2},\frac{2}{3},\frac{2}{3},\frac{3}{4}]$
Galois mean slope: $1.6666666666666667$
Galois splitting model:not computed