Properties

Label 2.1.16.24d1.1
Base \(\Q_{2}\)
Degree \(16\)
e \(16\)
f \(1\)
c \(24\)
Galois group $C_4^2:S_3$ (as 16T195)

Related objects

Downloads

Learn more

Defining polynomial

\(x^{16} + 2 x^{9} + 2 x^{4} + 2\) Copy content Toggle raw display

Invariants

Base field: $\Q_{2}$
Degree $d$: $16$
Ramification index $e$: $16$
Residue field degree $f$: $1$
Discriminant exponent $c$: $24$
Discriminant root field: $\Q_{2}$
Root number: $1$
$\Aut(K/\Q_{2})$: $C_1$
This field is not Galois over $\Q_{2}.$
Visible Artin slopes:$[\frac{4}{3}, \frac{4}{3}, \frac{5}{3}, \frac{5}{3}]$
Visible Swan slopes:$[\frac{1}{3},\frac{1}{3},\frac{2}{3},\frac{2}{3}]$
Means:$\langle\frac{1}{6}, \frac{1}{4}, \frac{11}{24}, \frac{9}{16}\rangle$
Rams:$(\frac{1}{3}, \frac{1}{3}, \frac{5}{3}, \frac{5}{3})$
Jump set:$[1, 2, 5, 10, 25]$
Roots of unity:$2$

Intermediate fields

2.1.4.4a1.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Canonical tower

Unramified subfield:$\Q_{2}$
Relative Eisenstein polynomial: \( x^{16} + 2 x^{9} + 2 x^{4} + 2 \) Copy content Toggle raw display

Ramification polygon

Residual polynomials:$z^4 + 1$,$z + 1$
Associated inertia:$1$,$1$
Indices of inseparability:$[9, 9, 4, 4, 0]$

Invariants of the Galois closure

Galois degree: $96$
Galois group: $C_4^2:S_3$ (as 16T195)
Inertia group: $C_4^2:C_3$ (as 16T63)
Wild inertia group: $C_4^2$
Galois unramified degree: $2$
Galois tame degree: $3$
Galois Artin slopes: $[\frac{4}{3}, \frac{4}{3}, \frac{5}{3}, \frac{5}{3}]$
Galois Swan slopes: $[\frac{1}{3},\frac{1}{3},\frac{2}{3},\frac{2}{3}]$
Galois mean slope: $1.5416666666666667$
Galois splitting model: $x^{16} - 2 x^{15} - 176 x^{14} - 76 x^{13} + 10584 x^{12} + 24580 x^{11} - 236488 x^{10} - 925212 x^{9} + 1185218 x^{8} + 9368638 x^{7} + 6137672 x^{6} - 27314420 x^{5} - 43923786 x^{4} - 1203456 x^{3} + 35879804 x^{2} + 23272968 x + 4217441$ Copy content Toggle raw display