Properties

Label 2.1.16.20a1.1
Base \(\Q_{2}\)
Degree \(16\)
e \(16\)
f \(1\)
c \(20\)
Galois group $C_2^3.S_4$ (as 16T433)

Related objects

Downloads

Learn more

Defining polynomial

\(x^{16} + 2 x^{5} + 2\) Copy content Toggle raw display

Invariants

Base field: $\Q_{2}$
Degree $d$: $16$
Ramification index $e$: $16$
Residue field degree $f$: $1$
Discriminant exponent $c$: $20$
Discriminant root field: $\Q_{2}$
Root number: $1$
$\Aut(K/\Q_{2})$: $C_1$
This field is not Galois over $\Q_{2}.$
Visible Artin slopes:$[\frac{4}{3}, \frac{4}{3}, \frac{4}{3}, \frac{4}{3}]$
Visible Swan slopes:$[\frac{1}{3},\frac{1}{3},\frac{1}{3},\frac{1}{3}]$
Means:$\langle\frac{1}{6}, \frac{1}{4}, \frac{7}{24}, \frac{5}{16}\rangle$
Rams:$(\frac{1}{3}, \frac{1}{3}, \frac{1}{3}, \frac{1}{3})$
Jump set:$[1, 2, 4, 8, 21]$
Roots of unity:$2$

Intermediate fields

2.1.4.4a1.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Canonical tower

Unramified subfield:$\Q_{2}$
Relative Eisenstein polynomial: \( x^{16} + 2 x^{5} + 2 \) Copy content Toggle raw display

Ramification polygon

Residual polynomials:$z^5 + 1$
Associated inertia:$4$
Indices of inseparability:$[5, 5, 5, 5, 0]$

Invariants of the Galois closure

Galois degree: $192$
Galois group: $C_2^3.S_4$ (as 16T433)
Inertia group: not computed
Wild inertia group: not computed
Galois unramified degree: $4$
Galois tame degree: $3$
Galois Artin slopes: $[\frac{4}{3}, \frac{4}{3}, \frac{4}{3}, \frac{4}{3}]$
Galois Swan slopes: $[\frac{1}{3},\frac{1}{3},\frac{1}{3},\frac{1}{3}]$
Galois mean slope: $1.2916666666666667$
Galois splitting model:not computed