Properties

Label 2.1.12.28c1.83
Base \(\Q_{2}\)
Degree \(12\)
e \(12\)
f \(1\)
c \(28\)
Galois group $C_2^2\times S_4$ (as 12T48)

Related objects

Downloads

Learn more

Defining polynomial

\(x^{12} + 4 x^{11} + 2 x^{10} + 4 x^{7} + 4 x^{6} + 4 x^{5} + 4 x^{2} + 2\) Copy content Toggle raw display

Invariants

Base field: $\Q_{2}$
Degree $d$: $12$
Ramification index $e$: $12$
Residue field degree $f$: $1$
Discriminant exponent $c$: $28$
Discriminant root field: $\Q_{2}$
Root number: $1$
$\Aut(K/\Q_{2})$: $C_2^2$
This field is not Galois over $\Q_{2}.$
Visible Artin slopes:$[\frac{8}{3}, 3]$
Visible Swan slopes:$[\frac{5}{3},2]$
Means:$\langle\frac{5}{6}, \frac{17}{12}\rangle$
Rams:$(5, 7)$
Jump set:$[3, 9, 21]$
Roots of unity:$2$

Intermediate fields

$\Q_{2}(\sqrt{2})$, 2.1.3.2a1.1, 2.1.6.10a1.3, 2.1.6.11a1.5, 2.1.6.11a1.14

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Canonical tower

Unramified subfield:$\Q_{2}$
Relative Eisenstein polynomial: \( x^{12} + 4 x^{11} + 2 x^{10} + 4 x^{7} + 4 x^{6} + 4 x^{5} + 4 x^{2} + 2 \) Copy content Toggle raw display

Ramification polygon

Residual polynomials:$z^8 + z^4 + 1$,$z^2 + 1$,$z + 1$
Associated inertia:$2$,$1$,$1$
Indices of inseparability:$[17, 10, 0]$

Invariants of the Galois closure

Galois degree: $96$
Galois group: $C_2^2\times S_4$ (as 12T48)
Inertia group: $C_2^2\times A_4$ (as 12T25)
Wild inertia group: $C_2^4$
Galois unramified degree: $2$
Galois tame degree: $3$
Galois Artin slopes: $[2, \frac{8}{3}, \frac{8}{3}, 3]$
Galois Swan slopes: $[1,\frac{5}{3},\frac{5}{3},2]$
Galois mean slope: $2.6666666666666665$
Galois splitting model:$x^{12} - 4 x^{11} + 16 x^{9} - 11 x^{8} - 28 x^{7} + 32 x^{6} - 16 x^{5} - 33 x^{4} + 64 x^{3} - 20 x^{2} + 32 x + 1$