Properties

Label 2.1.10.16a1.15
Base \(\Q_{2}\)
Degree \(10\)
e \(10\)
f \(1\)
c \(16\)
Galois group $((C_2^4 : C_5):C_4)\times C_2$ (as 10T29)

Related objects

Downloads

Learn more

Defining polynomial

\(x^{10} + 2 x^{9} + 2 x^{7} + 4 x^{3} + 4 x + 2\) Copy content Toggle raw display

Invariants

Base field: $\Q_{2}$
Degree $d$: $10$
Ramification index $e$: $10$
Residue field degree $f$: $1$
Discriminant exponent $c$: $16$
Discriminant root field: $\Q_{2}(\sqrt{-5})$
Root number: $i$
$\Aut(K/\Q_{2})$: $C_2$
This field is not Galois over $\Q_{2}.$
Visible Artin slopes:$[\frac{12}{5}]$
Visible Swan slopes:$[\frac{7}{5}]$
Means:$\langle\frac{7}{10}\rangle$
Rams:$(7)$
Jump set:$[5, 15]$
Roots of unity:$2$

Intermediate fields

2.1.5.4a1.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Canonical tower

Unramified subfield:$\Q_{2}$
Relative Eisenstein polynomial: \( x^{10} + 2 x^{9} + 2 x^{7} + 4 x^{3} + 4 x + 2 \) Copy content Toggle raw display

Ramification polygon

Residual polynomials:$z^8 + z^6 + 1$,$z + 1$
Associated inertia:$4$,$1$
Indices of inseparability:$[7, 0]$

Invariants of the Galois closure

Galois degree: $640$
Galois group: $C_2\wr F_5$ (as 10T29)
Inertia group: $C_2\wr C_5$ (as 10T14)
Wild inertia group: $C_2^5$
Galois unramified degree: $4$
Galois tame degree: $5$
Galois Artin slopes: $[2, \frac{12}{5}, \frac{12}{5}, \frac{12}{5}, \frac{12}{5}]$
Galois Swan slopes: $[1,\frac{7}{5},\frac{7}{5},\frac{7}{5},\frac{7}{5}]$
Galois mean slope: $2.3375$
Galois splitting model:$x^{10} - 2 x^{9} + x^{8} + 2 x^{7} - 16 x^{6} + 14 x^{5} + 84 x^{4} - 102 x^{3} + 21 x^{2} + 12 x + 3$