Properties

Label 17.17.1.0a1.1
Base \(\Q_{17}\)
Degree \(17\)
e \(1\)
f \(17\)
c \(0\)
Galois group $C_{17}$ (as 17T1)

Related objects

Downloads

Learn more

Defining polynomial

\(x^{17} + 16 x + 14\) Copy content Toggle raw display

Invariants

Base field: $\Q_{17}$
Degree $d$: $17$
Ramification index $e$: $1$
Residue field degree $f$: $17$
Discriminant exponent $c$: $0$
Discriminant root field: $\Q_{17}$
Root number: $1$
$\Aut(K/\Q_{17})$ $=$$\Gal(K/\Q_{17})$: $C_{17}$
This field is Galois and abelian over $\Q_{17}.$
Visible Artin slopes:$[\ ]$
Visible Swan slopes:$[\ ]$
Means:$\langle\ \rangle$
Rams:$(\ )$
Jump set:undefined
Roots of unity:$827240261886336764176 = (17^{ 17 } - 1)$

Intermediate fields

The extension is primitive: there are no intermediate fields between this field and $\Q_{ 17 }$.

Canonical tower

Unramified subfield:17.17.1.0a1.1 $\cong \Q_{17}(t)$ where $t$ is a root of \( x^{17} + 16 x + 14 \) Copy content Toggle raw display
Relative Eisenstein polynomial: \( x - 17 \) $\ \in\Q_{17}(t)[x]$ Copy content Toggle raw display

Ramification polygon

The ramification polygon is trivial for unramified extensions.

Invariants of the Galois closure

Galois degree: $17$
Galois group: $C_{17}$ (as 17T1)
Inertia group: trivial
Wild inertia group: $C_1$
Galois unramified degree: $17$
Galois tame degree: $1$
Galois Artin slopes: $[\ ]$
Galois Swan slopes: $[\ ]$
Galois mean slope: $0.0$
Galois splitting model:$x^{17} - x^{16} - 48 x^{15} + 105 x^{14} + 763 x^{13} - 2579 x^{12} - 3653 x^{11} + 23311 x^{10} - 11031 x^{9} - 74838 x^{8} + 107759 x^{7} + 50288 x^{6} - 198615 x^{5} + 102976 x^{4} + 58507 x^{3} - 75722 x^{2} + 25763 x - 2837$