Properties

Label 17.1.17.32a16.16
Base \(\Q_{17}\)
Degree \(17\)
e \(17\)
f \(1\)
c \(32\)
Galois group $C_{17}$ (as 17T1)

Related objects

Downloads

Learn more

Defining polynomial

\(x^{17} + 272 x^{16} + 4352\) Copy content Toggle raw display

Invariants

Base field: $\Q_{17}$
Degree $d$: $17$
Ramification index $e$: $17$
Residue field degree $f$: $1$
Discriminant exponent $c$: $32$
Discriminant root field: $\Q_{17}$
Root number: $1$
$\Aut(K/\Q_{17})$ $=$$\Gal(K/\Q_{17})$: $C_{17}$
This field is Galois and abelian over $\Q_{17}.$
Visible Artin slopes:$[2]$
Visible Swan slopes:$[1]$
Means:$\langle\frac{16}{17}\rangle$
Rams:$(1)$
Jump set:undefined
Roots of unity:$16 = (17 - 1)$

Intermediate fields

The extension is primitive: there are no intermediate fields between this field and $\Q_{ 17 }$.

Canonical tower

Unramified subfield:$\Q_{17}$
Relative Eisenstein polynomial: \( x^{17} + 272 x^{16} + 4352 \) Copy content Toggle raw display

Ramification polygon

Residual polynomials:$z^{16} + 16$
Associated inertia:$1$
Indices of inseparability:$[16, 0]$

Invariants of the Galois closure

Galois degree: $17$
Galois group: $C_{17}$ (as 17T1)
Inertia group: $C_{17}$ (as 17T1)
Wild inertia group: $C_{17}$
Galois unramified degree: $1$
Galois tame degree: $1$
Galois Artin slopes: $[2]$
Galois Swan slopes: $[1]$
Galois mean slope: $1.8823529411764706$
Galois splitting model:not computed