Properties

Label 17.1.17.28a4.2
Base \(\Q_{17}\)
Degree \(17\)
e \(17\)
f \(1\)
c \(28\)
Galois group $F_{17}$ (as 17T5)

Related objects

Downloads

Learn more

Defining polynomial

\(x^{17} + 136 x^{12} + 17\) Copy content Toggle raw display

Invariants

Base field: $\Q_{17}$
Degree $d$: $17$
Ramification index $e$: $17$
Residue field degree $f$: $1$
Discriminant exponent $c$: $28$
Discriminant root field: $\Q_{17}(\sqrt{3})$
Root number: $1$
$\Aut(K/\Q_{17})$: $C_1$
This field is not Galois over $\Q_{17}.$
Visible Artin slopes:$[\frac{7}{4}]$
Visible Swan slopes:$[\frac{3}{4}]$
Means:$\langle\frac{12}{17}\rangle$
Rams:$(\frac{3}{4})$
Jump set:undefined
Roots of unity:$16 = (17 - 1)$

Intermediate fields

The extension is primitive: there are no intermediate fields between this field and $\Q_{ 17 }$.

Canonical tower

Unramified subfield:$\Q_{17}$
Relative Eisenstein polynomial: \( x^{17} + 136 x^{12} + 17 \) Copy content Toggle raw display

Ramification polygon

Residual polynomials:$z^4 + 6$
Associated inertia:$4$
Indices of inseparability:$[12, 0]$

Invariants of the Galois closure

Galois degree: $272$
Galois group: $F_{17}$ (as 17T5)
Inertia group: $C_{17}:C_4$ (as 17T3)
Wild inertia group: $C_{17}$
Galois unramified degree: $4$
Galois tame degree: $4$
Galois Artin slopes: $[\frac{7}{4}]$
Galois Swan slopes: $[\frac{3}{4}]$
Galois mean slope: $1.6911764705882353$
Galois splitting model:not computed