Properties

Label 151.2.8.14a1.5
Base \(\Q_{151}\)
Degree \(16\)
e \(8\)
f \(2\)
c \(14\)
Galois group $C_8.C_4$ (as 16T49)

Related objects

Downloads

Learn more

Defining polynomial

$( x^{2} + 149 x + 6 )^{8} + 302 x + 21895$ Copy content Toggle raw display

Invariants

Base field: $\Q_{151}$
Degree $d$: $16$
Ramification index $e$: $8$
Residue field degree $f$: $2$
Discriminant exponent $c$: $14$
Discriminant root field: $\Q_{151}$
Root number: $1$
$\Aut(K/\Q_{151})$: $C_8$
This field is not Galois over $\Q_{151}.$
Visible Artin slopes:$[\ ]$
Visible Swan slopes:$[\ ]$
Means:$\langle\ \rangle$
Rams:$(\ )$
Jump set:undefined
Roots of unity:$22800 = (151^{ 2 } - 1)$

Intermediate fields

$\Q_{151}(\sqrt{3})$, $\Q_{151}(\sqrt{151})$, $\Q_{151}(\sqrt{151\cdot 3})$, 151.2.2.2a1.2, 151.2.4.6a1.3

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Canonical tower

Unramified subfield:$\Q_{151}(\sqrt{3})$ $\cong \Q_{151}(t)$ where $t$ is a root of \( x^{2} + 149 x + 6 \) Copy content Toggle raw display
Relative Eisenstein polynomial: \( x^{8} + 302 t + 21895 \) $\ \in\Q_{151}(t)[x]$ Copy content Toggle raw display

Ramification polygon

Residual polynomials:$z^7 + 8 z^6 + 28 z^5 + 56 z^4 + 70 z^3 + 56 z^2 + 28 z + 8$
Associated inertia:$1$
Indices of inseparability:$[0]$

Invariants of the Galois closure

Galois degree: $32$
Galois group: $C_8.C_4$ (as 16T49)
Inertia group: Intransitive group isomorphic to $C_8$
Wild inertia group: $C_1$
Galois unramified degree: $4$
Galois tame degree: $8$
Galois Artin slopes: $[\ ]$
Galois Swan slopes: $[\ ]$
Galois mean slope: $0.875$
Galois splitting model:not computed