Properties

Label 103.21.1.0a1.1
Base \(\Q_{103}\)
Degree \(21\)
e \(1\)
f \(21\)
c \(0\)
Galois group $C_{21}$ (as 21T1)

Related objects

Downloads

Learn more

Defining polynomial

\(x^{21} - x + 68\) Copy content Toggle raw display

Invariants

Base field: $\Q_{103}$
Degree $d$: $21$
Ramification index $e$: $1$
Residue field degree $f$: $21$
Discriminant exponent $c$: $0$
Discriminant root field: $\Q_{103}$
Root number: $1$
$\Aut(K/\Q_{103})$ $=$$\Gal(K/\Q_{103})$: $C_{21}$
This field is Galois and abelian over $\Q_{103}.$
Visible Artin slopes:$[\ ]$
Visible Swan slopes:$[\ ]$
Means:$\langle\ \rangle$
Rams:$(\ )$
Jump set:undefined
Roots of unity:$1860294571709496226110032706809177658295302 = (103^{ 21 } - 1)$

Intermediate fields

103.3.1.0a1.1, 103.7.1.0a1.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Canonical tower

Unramified subfield:103.21.1.0a1.1 $\cong \Q_{103}(t)$ where $t$ is a root of \( x^{21} - x + 68 \) Copy content Toggle raw display
Relative Eisenstein polynomial: \( x - 103 \) $\ \in\Q_{103}(t)[x]$ Copy content Toggle raw display

Ramification polygon

The ramification polygon is trivial for unramified extensions.

Invariants of the Galois closure

Galois degree: $21$
Galois group: $C_{21}$ (as 21T1)
Inertia group: trivial
Wild inertia group: $C_1$
Galois unramified degree: $21$
Galois tame degree: $1$
Galois Artin slopes: $[\ ]$
Galois Swan slopes: $[\ ]$
Galois mean slope: $0.0$
Galois splitting model:not computed