Properties

Label 103.1.17.16a1.1
Base \(\Q_{103}\)
Degree \(17\)
e \(17\)
f \(1\)
c \(16\)
Galois group $C_{17}$ (as 17T1)

Related objects

Downloads

Learn more

Defining polynomial

\(x^{17} + 103\) Copy content Toggle raw display

Invariants

Base field: $\Q_{103}$
Degree $d$: $17$
Ramification index $e$: $17$
Residue field degree $f$: $1$
Discriminant exponent $c$: $16$
Discriminant root field: $\Q_{103}$
Root number: $1$
$\Aut(K/\Q_{103})$ $=$$\Gal(K/\Q_{103})$: $C_{17}$
This field is Galois and abelian over $\Q_{103}.$
Visible Artin slopes:$[\ ]$
Visible Swan slopes:$[\ ]$
Means:$\langle\ \rangle$
Rams:$(\ )$
Jump set:undefined
Roots of unity:$102 = (103 - 1)$

Intermediate fields

The extension is primitive: there are no intermediate fields between this field and $\Q_{ 103 }$.

Canonical tower

Unramified subfield:$\Q_{103}$
Relative Eisenstein polynomial: \( x^{17} + 103 \) Copy content Toggle raw display

Ramification polygon

Residual polynomials:$z^{16} + 17 z^{15} + 33 z^{14} + 62 z^{13} + 11 z^{12} + 8 z^{11} + 16 z^{10} + 84 z^9 + 2 z^8 + 2 z^7 + 84 z^6 + 16 z^5 + 8 z^4 + 11 z^3 + 62 z^2 + 33 z + 17$
Associated inertia:$1$
Indices of inseparability:$[0]$

Invariants of the Galois closure

Galois degree: $17$
Galois group: $C_{17}$ (as 17T1)
Inertia group: $C_{17}$ (as 17T1)
Wild inertia group: $C_1$
Galois unramified degree: $1$
Galois tame degree: $17$
Galois Artin slopes: $[\ ]$
Galois Swan slopes: $[\ ]$
Galois mean slope: $0.9411764705882353$
Galois splitting model:not computed