Defining polynomial
\(x^{17} + 103\)
|
Invariants
Base field: | $\Q_{103}$ |
Degree $d$: | $17$ |
Ramification index $e$: | $17$ |
Residue field degree $f$: | $1$ |
Discriminant exponent $c$: | $16$ |
Discriminant root field: | $\Q_{103}$ |
Root number: | $1$ |
$\Aut(K/\Q_{103})$ $=$$\Gal(K/\Q_{103})$: | $C_{17}$ |
This field is Galois and abelian over $\Q_{103}.$ | |
Visible Artin slopes: | $[\ ]$ |
Visible Swan slopes: | $[\ ]$ |
Means: | $\langle\ \rangle$ |
Rams: | $(\ )$ |
Jump set: | undefined |
Roots of unity: | $102 = (103 - 1)$ |
Intermediate fields
The extension is primitive: there are no intermediate fields between this field and $\Q_{ 103 }$. |
Canonical tower
Unramified subfield: | $\Q_{103}$ |
Relative Eisenstein polynomial: |
\( x^{17} + 103 \)
|
Ramification polygon
Residual polynomials: | $z^{16} + 17 z^{15} + 33 z^{14} + 62 z^{13} + 11 z^{12} + 8 z^{11} + 16 z^{10} + 84 z^9 + 2 z^8 + 2 z^7 + 84 z^6 + 16 z^5 + 8 z^4 + 11 z^3 + 62 z^2 + 33 z + 17$ |
Associated inertia: | $1$ |
Indices of inseparability: | $[0]$ |
Invariants of the Galois closure
Galois degree: | $17$ |
Galois group: | $C_{17}$ (as 17T1) |
Inertia group: | $C_{17}$ (as 17T1) |
Wild inertia group: | $C_1$ |
Galois unramified degree: | $1$ |
Galois tame degree: | $17$ |
Galois Artin slopes: | $[\ ]$ |
Galois Swan slopes: | $[\ ]$ |
Galois mean slope: | $0.9411764705882353$ |
Galois splitting model: | not computed |