The splitting field of a mod-$\ell$ Galois representation $\rho:\Gal_K \to G(\F_{\ell})$ is the fixed field of the kernel of $\rho$. This is a finite Galois extension $L/K$ with $\Gal(L/K)$ isomorphic to the image of $\rho$.
Authors:
Knowl status:
- Review status: beta
- Last edited by Andrew Sutherland on 2023-03-25 11:42:16
Referred to by:
History:
(expand/hide all)
Differences
(show/hide)
- modlgal.frobenius_charpoly
- modlgal.frobenius_determinant
- modlgal.frobenius_order
- modlgal.frobenius_prime
- modlgal.frobenius_trace
- modlgal.min_sib_splitting_field
- modlgal.projective_kernel_polynomial
- modlgal.ramified
- modlgal.top_slope
- lmfdb/modl_galois_representations/templates/modlgal_rep.html (lines 47-50)