A local number field is a finite extension field of a field $\Q_p$ where $p$ is a prime number.
Equivalently, these are non-archimedian local fields of characteristic $0$.
Authors:
Knowl status:
- Review status: reviewed
- Last edited by John Cremona on 2018-05-23 14:59:18
Referred to by:
History:
(expand/hide all)
- artin.conductor
- g2c.tamagawa
- lf.defining_polynomial
- lf.discriminant_exponent
- lf.field.label
- lf.galois_invariants
- lf.newton_polygon
- lf.newton_slopes
- lf.slope_content
- lf.top_slope
- lf.wild_inertia_group
- ring.dedekind_domain
- lmfdb/api/api.py (line 231)
- lmfdb/api2/utils.py (line 376)
- lmfdb/local_fields/templates/lf-index.html (line 11)
- 2018-05-23 14:59:18 by John Cremona (Reviewed)