An elliptic curve $E$ over a field $k$ is a smooth projective curve of genus $1$ together with a distinguished $k$-rational point $O$.
The most commonly used model for elliptic curves is a Weierstrass model: a smooth plane cubic with the point $O$ as the unique point at infinity.
Knowl status:
- Review status: reviewed
- Last edited by John Jones on 2018-06-18 02:34:46
Referred to by:
History:
(expand/hide all)
- ag.abelian_surface
- ag.abelian_variety
- ag.modcurve.x0
- ag.modcurve.x1
- dq.ec.reliability
- dq.ecnf.extent
- dq.ecnf.reliability
- ec.additive_reduction
- ec.bad_reduction
- ec.canonical_height
- ec.conductor
- ec.discriminant
- ec.endomorphism
- ec.endomorphism_ring
- ec.galois_rep
- ec.galois_rep_image
- ec.global_minimal_model
- ec.good_ordinary_reduction
- ec.good_reduction
- ec.good_supersingular_reduction
- ec.integral_model
- ec.invariants
- ec.isogeny
- ec.isogeny_class
- ec.isogeny_graph
- ec.isogeny_matrix
- ec.isomorphism
- ec.j_invariant
- ec.kodaira_symbol
- ec.local_data
- ec.local_minimal_discriminant
- ec.local_minimal_model
- ec.local_root_number
- ec.minimal_discriminant
- ec.mordell_weil_theorem
- ec.multiplicative_reduction
- ec.nonsplit_multiplicative_reduction
- ec.obstruction_class
- ec.q.analytic_sha_value
- ec.q.bsdconjecture
- ec.q.canonical_height
- ec.q.conductor
- ec.q.cremona_label
- ec.q.discriminant
- ec.q.invariants
- ec.q.j_invariant
- ec.q.lmfdb_label
- ec.q.manin_constant
- ec.q.modular_degree
- ec.q.modular_form
- ec.q.modular_parametrization
- ec.q.regulator
- ec.q.rouse_classification
- ec.q.torsion_growth
- ec.q_curve
- ec.rank
- ec.reduction_type
- ec.regulator
- ec.semi_global_minimal_model
- ec.split_multiplicative_reduction
- ec.tamagawa_number
- ec.torsion_order
- ec.weierstrass_coeffs
- g2c.decomposition
- g2c.geom_end_alg
- g2c.real_period
- mf.gl2.history.elliptic
- rcs.cande.lfunction
- rcs.rigor.lfunction.ec
- lmfdb/ecnf/ecnf_stats.py (lines 28-29)
- lmfdb/ecnf/templates/ecnf-index.html (line 9)
- lmfdb/ecnf/templates/ecnf-index.html (line 30)
- lmfdb/elliptic_curves/__init__.py (line 8)
- lmfdb/elliptic_curves/__init__.py (line 15)
- lmfdb/elliptic_curves/ec_stats.py (line 8)
- lmfdb/elliptic_curves/ec_stats.py (line 20)
- lmfdb/elliptic_curves/templates/ec-index.html (line 7)
- lmfdb/elliptic_curves/templates/ec-index.html (line 33)
- lmfdb/elliptic_curves/web_ec.py (line 56)
- lmfdb/knowledge/knowl.py (line 192)
- 2018-06-18 02:34:46 by John Jones (Reviewed)