For each level $N$, weight $k$, and character $\chi$ the space $S_k(N,\chi)$ of cuspidal modular forms can be decomposed as an internal direct sum \[ S_k(N,\chi) = S_k^{\rm old}(N,\chi) \oplus S_k^{\rm new}(N,\chi). \] The old subspace $S_k^{\rm old}(N,\chi)$ is generated by all elements of $S_k(N,\chi)$ of the form $f(m z)$ for $f\in S_k(M,\chi')$ where $\chi'$ induces $\chi$ and $m M | N$.
The new subspace $S_k^{\rm new}(\Gamma_0(N),\chi)$ is the orthogonal complement of $S_k^{\rm old}(N,\chi)$ with respect to the Petersson inner product on $S_k(N,\chi)$. The newforms in $S_k(N,\chi)$ are a canonical basis for this subspace.
Authors:
Knowl status:
- Review status: reviewed
- Last edited by David Farmer on 2019-05-01 11:37:12
Referred to by:
History:
(expand/hide all)
- cmf.1600.1.bd.bottom
- cmf.3311.1.h.bottom
- cmf.distinguishing_primes
- cmf.hecke_galois_orbit
- cmf.hecke_kernels
- cmf.hecke_operator
- cmf.newform_subspace
- cmf.oldspace
- cmf.search_input
- cmf.space_trace_form
- cmf.trace_bound
- cmf.trace_form
- rcs.cande.cmf
- rcs.rigor.cmf
- lmfdb/classical_modular_forms/main.py (line 1307)
- lmfdb/classical_modular_forms/templates/cmf_browse.html (line 32)
- lmfdb/classical_modular_forms/templates/cmf_full_gamma1_space.html (line 22)
- lmfdb/classical_modular_forms/templates/cmf_newform_common.html (line 8)
- lmfdb/classical_modular_forms/web_newform.py (line 698)
- 2019-05-01 11:37:12 by David Farmer (Reviewed)
- 2019-04-28 16:05:12 by David Farmer
- 2019-04-25 17:23:15 by David Farmer
- 2019-01-31 04:35:42 by Andrew Sutherland