The order of a Dirichlet character $\chi$ is the least positive integer $n$ such that $\chi^n$ is the trivial character of the same modulus as $\chi$. Equivalently, it is the order $n$ of the image of $\chi$ in $\mathbb{C}^\times$, the group of $n$th roots of unity.
Knowl status:
- Review status: reviewed
- Last edited by Pascal Molin on 2019-05-01 04:39:36
Referred to by:
History:
(expand/hide all)
- character.dirichlet.basic_properties
- character.dirichlet.conrey.order
- character.dirichlet.degree
- character.dirichlet.field_cut_out
- character.dirichlet.galois_orbit
- character.dirichlet.galois_orbit_index
- character.dirichlet.minimal
- character.dirichlet.principal
- character.dirichlet.value_field
- cmf.self_twist
- columns.char_dirichlet.order
- columns.char_orbits.order
- mf.ellitpic.self_twist
- lmfdb/characters/main.py (line 105)
- lmfdb/characters/main.py (line 246)
- lmfdb/characters/main.py (line 732)
- lmfdb/characters/templates/CharGroup.html (line 47)
- lmfdb/characters/templates/CharacterCommon.html (line 31)
- lmfdb/characters/templates/CharacterNavigate.html (line 20)
- lmfdb/characters/templates/ModulusList.html (line 91)
- lmfdb/characters/templates/OrderList.html (line 90)
- lmfdb/classical_modular_forms/main.py (line 841)
- lmfdb/classical_modular_forms/main.py (line 1185)
- lmfdb/classical_modular_forms/main.py (line 1343)
- lmfdb/classical_modular_forms/main.py (line 1529)
- lmfdb/classical_modular_forms/web_newform.py (line 941)
- lmfdb/classical_modular_forms/web_newform.py (line 976)
- lmfdb/classical_modular_forms/web_newform.py (line 1058)
- lmfdb/classical_modular_forms/web_newform.py (line 1083)
- lmfdb/classical_modular_forms/web_newform.py (line 1130)
- lmfdb/classical_modular_forms/web_newform.py (line 1154)
- lmfdb/classical_modular_forms/web_space.py (line 405)
- 2019-05-01 04:39:36 by Pascal Molin (Reviewed)
- 2018-07-04 21:38:51 by Kiran S. Kedlaya (Reviewed)