show · character.dirichlet.galois_orbit all knowls · up · search:

The Galois orbit of a Dirichlet character χ\chi of modulus qq and order nn is the set [χ]:={σ(χ):σGal(Q(ζn)/Q)}[\chi]:=\{\sigma(\chi): \sigma\in \Gal(\Q(\zeta_n)/\Q)\}, where σ(χ)\sigma(\chi) denotes the Dirichlet character of modulus qq defined by kσ(χ(k))k \mapsto \sigma(\chi(k)). The map χσ(χ)\chi\to \sigma(\chi) defines a faithful action of the Galois group Gal(Q(ζn)/Q)\Gal(\Q(\zeta_n)/\Q) on the set of Dirichlet characters of modulus qq and order nn, each of which has Q(ζn)\Q(\zeta_n) as its field of values.

Authors:
Knowl status:
  • Review status: reviewed
  • Last edited by Andrew Sutherland on 2019-01-12 15:36:30
Referred to by:
History: (expand/hide all)