The Galois orbit of a Dirichlet character $\chi$ of modulus $q$ and order $n$ is the set $[\chi]:=\{\sigma(\chi): \sigma\in \Gal(\Q(\zeta_n)/\Q)\}$, where $\sigma(\chi)$ denotes the Dirichlet character of modulus $q$ defined by $k \mapsto \sigma(\chi(k))$. The map $\chi\to \sigma(\chi)$ defines a faithful action of the Galois group $\Gal(\Q(\zeta_n)/\Q)$ on the set of Dirichlet characters of modulus $q$ and order $n$, each of which has $\Q(\zeta_n)$ as its field of values.
Knowl status:
- Review status: reviewed
- Last edited by Andrew Sutherland on 2019-01-12 15:36:30
Referred to by:
History:
(expand/hide all)
- character.dirichlet.5.2.bottom
- character.dirichlet.conrey.orbit_label
- character.dirichlet.galois_orbit_index
- character.dirichlet.galois_orbit_label
- cmf.decomposition.new.gamma1
- cmf.inner_twist
- cmf.inner_twist_multiplicity
- cmf.label
- cmf.twist
- cmf.twist_multiplicity
- columns.char_dirichlet.conductor
- columns.char_dirichlet.degree
- columns.char_dirichlet.first
- columns.char_dirichlet.is_even
- columns.char_dirichlet.is_minimal
- columns.char_dirichlet.is_primitive
- columns.char_dirichlet.is_real
- columns.char_dirichlet.label
- columns.char_dirichlet.last
- columns.char_dirichlet.modulus
- columns.char_dirichlet.orbit
- columns.char_dirichlet.order
- columns.char_dirichlet.primitive_orbit
- columns.char_orbits.conductor
- columns.char_orbits.degree
- columns.char_orbits.first_label
- columns.char_orbits.is_minimal
- columns.char_orbits.is_primitive
- columns.char_orbits.is_real
- columns.char_orbits.label
- columns.char_orbits.last_label
- columns.char_orbits.modulus
- columns.char_orbits.orbit_index
- columns.char_orbits.order
- columns.char_orbits.parity
- columns.char_orbits.primitive_label
- dq.character.dirichlet.extent
- mf.siegel.label
- rcs.cande.character.dirichlet
- lmfdb/characters/main.py (line 756)
- lmfdb/characters/main.py (line 767)
- lmfdb/characters/templates/CharacterCommon.html (line 51)
- 2019-01-12 15:36:30 by Andrew Sutherland (Reviewed)