An abelian variety defined over the field $K$ is a smooth connected projective variety equipped with the structure of an algebraic group. The group law is automatically commutative.
An abelian variety of dimension 1 is the same as an elliptic curve.
Authors:
Knowl status:
- Review status: reviewed
- Last edited by Jennifer Paulhus on 2019-04-20 15:14:05
Referred to by:
History:
(expand/hide all)
Differences
(show/hide)
- ag.abelian_surface
- ag.base_field
- ag.canonical_height
- ag.complex_multiplication
- ag.conductor
- ag.endomorphism_algebra
- ag.endomorphism_ring
- ag.geom_simple
- ag.good_reduction
- ag.jacobian
- ag.mordell_weil
- ag.real_multiplication
- ag.regulator
- ag.selmer_group
- ag.simple
- ag.tate_shafarevich
- ag.torsor
- av.endomorphism_field
- av.fq.curve_point_counts
- av.fq.honda_tate
- av.fq.one_rational_point
- av.fq.ordinary
- av.fq.supersingular
- av.geometrically_simple
- av.geometrically_squarefree
- av.isogeny
- av.isogeny_class
- av.polarization
- av.potential_toric_rank
- av.princ_polarizable
- av.semiabelian_variety
- av.simple
- av.squarefree
- av.theta_divisor
- av.twist
- ec.bsdconjecture
- ec.endomorphism
- ec.endomorphism_ring
- ec.geom_endomorphism_ring
- ec.mordell_weil_group
- ec.q.bsdconjecture
- ec.q.endomorphism_ring
- g2c.analytic_rank
- g2c.analytic_sha
- g2c.bad_lfactors
- g2c.bsd_invariants
- g2c.conditional_mw_group
- g2c.decomposition
- g2c.end_alg
- g2c.geom_end_alg
- g2c.gl2type
- g2c.good_lfactors
- g2c.hasse_weil_conjecture
- g2c.isogeny_class
- g2c.jac_end_lattice
- g2c.jac_endomorphisms
- g2c.jacobian
- g2c.lfunction
- g2c.mordell_weil_rank
- g2c.mw_generator
- g2c.real_period
- g2c.tamagawa
- g2c.torsion
- g2c.two_selmer_rank
- g2c.two_torsion_field
- modcurve.decomposition
- modcurve.modular_cover
- modcurve.rank
- modcurve.simple
- nf.weil_polynomial
- rcs
- st_group.component_group
- st_group.definition
- st_group.degree
- st_group.first_a2_moment
- lmfdb/abvar/fq/stats.py (line 193)