-
av_fq_isog • Show schema
Hide schema
{'abvar_count': 11448, 'abvar_counts': [11448, 90668160, 829576675512, 7838487289036800, 73744527421645804728, 693839616137127114145920, 6528363269139694978758745272, 61425367311881865791333007360000, 577951260448666221287237208449882808, 5437943429355111425175206504940365596800], 'abvar_counts_str': '11448 90668160 829576675512 7838487289036800 73744527421645804728 693839616137127114145920 6528363269139694978758745272 61425367311881865791333007360000 577951260448666221287237208449882808 5437943429355111425175206504940365596800 ', 'angle_corank': 0, 'angle_rank': 2, 'angles': [0.633124938747657, 0.669494215923349], 'center_dim': 4, 'cohen_macaulay_max': 2, 'curve_count': 116, 'curve_counts': [116, 9634, 908948, 88541182, 8587586516, 832968709666, 80798290598708, 7837433845175038, 760231055899646516, 73742412690681271714], 'curve_counts_str': '116 9634 908948 88541182 8587586516 832968709666 80798290598708 7837433845175038 760231055899646516 73742412690681271714 ', 'curves': ['y^2=77*x^6+17*x^5+43*x^4+34*x^3+43*x^2+17*x+77', 'y^2=63*x^6+33*x^5+83*x^4+89*x^3+56*x^2+43*x+42', 'y^2=87*x^6+64*x^5+49*x^4+92*x^3+44*x^2+43*x+15', 'y^2=55*x^6+87*x^5+31*x^4+20*x^3+88*x^2+90*x+78', 'y^2=46*x^6+95*x^5+70*x^4+27*x^3+94*x^2+85*x+63', 'y^2=x^6+37*x^5+55*x^4+93*x^3+55*x^2+37*x+1', 'y^2=40*x^6+24*x^5+2*x^4+39*x^3+47*x^2+62*x+68', 'y^2=68*x^6+71*x^5+83*x^4+29*x^3+83*x^2+71*x+68', 'y^2=34*x^6+89*x^5+92*x^4+25*x^3+92*x^2+89*x+34', 'y^2=62*x^6+94*x^5+74*x^4+72*x^3+23*x^2+94*x+35', 'y^2=17*x^6+75*x^5+71*x^4+9*x^3+71*x^2+75*x+17', 'y^2=95*x^6+60*x^5+31*x^4+48*x^3+31*x^2+60*x+95', 'y^2=52*x^6+64*x^5+24*x^4+94*x^3+24*x^2+64*x+52', 'y^2=72*x^6+66*x^5+83*x^4+20*x^3+28*x^2+70*x+6', 'y^2=22*x^6+5*x^5+58*x^4+3*x^3+58*x^2+5*x+22', 'y^2=62*x^6+20*x^5+31*x^4+86*x^3+79*x^2+56*x+35', 'y^2=93*x^6+70*x^5+38*x^4+27*x^3+38*x^2+70*x+93', 'y^2=21*x^6+8*x^5+39*x^4+3*x^3+39*x^2+8*x+21', 'y^2=7*x^6+85*x^5+86*x^4+84*x^3+49*x^2+12*x+40', 'y^2=75*x^6+43*x^5+7*x^4+39*x^3+7*x^2+43*x+75', 'y^2=6*x^6+82*x^5+66*x^4+18*x^2+55*x+91', 'y^2=58*x^6+70*x^5+12*x^4+36*x^3+24*x^2+86*x+76', 'y^2=84*x^6+44*x^5+53*x^4+36*x^3+64*x^2+49*x+90', 'y^2=92*x^6+32*x^5+76*x^4+43*x^3+76*x^2+32*x+92', 'y^2=87*x^6+51*x^5+92*x^4+18*x^3+92*x^2+51*x+87', 'y^2=39*x^6+88*x^5+38*x^4+48*x^3+38*x^2+88*x+39', 'y^2=66*x^6+75*x^5+96*x^4+90*x^3+24*x^2+35*x+95', 'y^2=10*x^6+28*x^5+16*x^4+57*x^3+16*x^2+28*x+10', 'y^2=91*x^6+15*x^5+65*x^4+26*x^3+65*x^2+15*x+91', 'y^2=95*x^6+83*x^5+44*x^4+54*x^3+x^2+52*x+43', 'y^2=21*x^6+86*x^5+36*x^4+84*x^3+89*x^2+27*x+82', 'y^2=63*x^6+94*x^5+93*x^4+36*x^3+93*x^2+94*x+63', 'y^2=27*x^6+37*x^5+69*x^4+43*x^3+69*x^2+37*x+27', 'y^2=39*x^6+73*x^5+49*x^4+57*x^3+79*x^2+33*x+39', 'y^2=92*x^6+79*x^5+39*x^4+51*x^3+87*x^2+8*x+29', 'y^2=56*x^6+4*x^5+11*x^4+81*x^3+11*x^2+4*x+56', 'y^2=21*x^6+51*x^5+2*x^4+66*x^3+75*x^2+60*x+82', 'y^2=15*x^6+66*x^5+74*x^4+53*x^3+74*x^2+66*x+15', 'y^2=58*x^6+77*x^5+88*x^4+73*x^3+89*x^2+80*x+74', 'y^2=24*x^6+67*x^5+25*x^4+13*x^3+25*x^2+67*x+24', 'y^2=55*x^6+75*x^5+5*x^4+57*x^3+37*x^2+33*x+20', 'y^2=10*x^6+82*x^5+27*x^4+41*x^3+27*x^2+82*x+10', 'y^2=9*x^6+87*x^5+31*x^4+55*x^3+18*x^2+69*x+9', 'y^2=70*x^6+61*x^5+61*x^4+29*x^3+79*x^2+88*x+33', 'y^2=8*x^6+11*x^5+75*x^4+29*x^3+75*x^2+11*x+8', 'y^2=33*x^6+25*x^5+87*x^4+79*x^3+46*x^2+44*x+96', 'y^2=48*x^6+44*x^5+24*x^4+44*x^3+24*x^2+44*x+48', 'y^2=61*x^6+46*x^5+48*x^4+24*x^3+33*x^2+71*x+53', 'y^2=62*x^6+45*x^4+18*x^3+45*x^2+62', 'y^2=75*x^6+48*x^5+44*x^4+21*x^3+85*x^2+18*x+75', 'y^2=63*x^6+95*x^5+52*x^4+51*x^3+76*x^2+25*x+69', 'y^2=17*x^6+67*x^5+94*x^4+52*x^3+88*x^2+21*x+71', 'y^2=85*x^6+43*x^5+3*x^4+24*x^3+3*x^2+43*x+85', 'y^2=76*x^6+65*x^5+67*x^4+24*x^3+67*x^2+65*x+76', 'y^2=74*x^6+14*x^5+36*x^4+11*x^3+36*x^2+14*x+74', 'y^2=64*x^6+47*x^5+5*x^4+46*x^3+5*x^2+47*x+64', 'y^2=62*x^6+57*x^5+67*x^4+74*x^3+67*x^2+57*x+62', 'y^2=80*x^6+26*x^5+x^4+34*x^3+x^2+26*x+80', 'y^2=85*x^6+46*x^5+77*x^4+11*x^3+77*x^2+46*x+85', 'y^2=95*x^6+65*x^5+30*x^4+21*x^3+30*x^2+65*x+95', 'y^2=62*x^6+24*x^5+25*x^4+30*x^3+25*x^2+24*x+62', 'y^2=74*x^6+50*x^5+29*x^4+80*x^3+51*x^2+16*x+87', 'y^2=64*x^6+3*x^5+70*x^4+36*x^3+70*x^2+3*x+64', 'y^2=14*x^6+72*x^5+8*x^4+55*x^3+70*x^2+32*x+76', 'y^2=61*x^6+82*x^5+23*x^4+45*x^3+23*x^2+82*x+61', 'y^2=94*x^6+30*x^5+50*x^4+24*x^3+50*x^2+30*x+94', 'y^2=95*x^6+35*x^5+71*x^4+31*x^3+58*x^2+6*x+66', 'y^2=10*x^6+17*x^5+60*x^4+46*x^3+5*x^2+21*x+21', 'y^2=25*x^6+5*x^5+33*x^4+45*x^3+75*x^2+13*x+86', 'y^2=71*x^6+66*x^5+96*x^4+27*x^3+70*x^2+2*x+14', 'y^2=51*x^6+69*x^5+11*x^4+50*x^3+11*x^2+69*x+51', 'y^2=49*x^6+88*x^5+46*x^4+34*x^3+46*x^2+88*x+49', 'y^2=73*x^6+11*x^5+77*x^4+33*x^3+29*x^2+3*x+43', 'y^2=77*x^6+12*x^5+32*x^4+85*x^3+96*x^2+11*x+42', 'y^2=49*x^6+57*x^5+59*x^4+75*x^3+59*x^2+57*x+49', 'y^2=93*x^6+90*x^5+49*x^4+25*x^3+2*x^2+82*x+35', 'y^2=86*x^6+39*x^5+20*x^4+36*x^3+57*x^2+59*x+88', 'y^2=93*x^6+23*x^5+21*x^4+28*x^3+21*x^2+23*x+93', 'y^2=70*x^6+71*x^5+44*x^4+3*x^3+2*x^2+26*x+85', 'y^2=27*x^6+31*x^5+95*x^4+95*x^2+31*x+27', 'y^2=x^6+79*x^5+56*x^4+45*x^3+60*x^2+12*x+27', 'y^2=69*x^6+37*x^5+5*x^4+x^3+5*x^2+37*x+69', 'y^2=28*x^6+59*x^5+24*x^4+61*x^3+11*x^2+55*x+78', 'y^2=40*x^6+59*x^5+84*x^4+32*x^3+84*x^2+59*x+40', 'y^2=32*x^6+81*x^5+43*x^4+60*x^3+88*x^2+75*x+72', 'y^2=67*x^6+52*x^5+54*x^4+39*x^3+35*x^2+76*x+52', 'y^2=42*x^6+11*x^5+68*x^3+11*x+42', 'y^2=x^6+86*x^4+9*x^3+86*x^2+1', 'y^2=74*x^6+27*x^5+41*x^4+64*x^3+34*x^2+66*x+58', 'y^2=76*x^6+89*x^5+4*x^4+13*x^3+4*x^2+89*x+76', 'y^2=2*x^6+67*x^5+94*x^4+36*x^3+94*x^2+67*x+2', 'y^2=10*x^6+40*x^5+35*x^3+40*x+10', 'y^2=89*x^6+18*x^5+44*x^4+78*x^3+44*x^2+18*x+89', 'y^2=48*x^6+29*x^5+76*x^4+88*x^3+74*x^2+68*x+86', 'y^2=3*x^6+35*x^5+81*x^4+22*x^3+81*x^2+35*x+3', 'y^2=22*x^6+43*x^5+92*x^4+21*x^3+45*x^2+88*x+64', 'y^2=69*x^6+63*x^5+10*x^4+86*x^3+55*x^2+87*x+46', 'y^2=83*x^6+35*x^5+x^4+52*x^3+x^2+35*x+83', 'y^2=23*x^6+37*x^5+53*x^4+71*x^3+93*x^2+46*x+71', 'y^2=76*x^6+9*x^5+59*x^4+78*x^3+59*x^2+9*x+76', 'y^2=13*x^6+8*x^5+67*x^4+67*x^3+74*x^2+31*x+56', 'y^2=66*x^6+40*x^5+3*x^4+28*x^3+91*x^2+63*x+54'], 'dim1_distinct': 2, 'dim1_factors': 2, 'dim2_distinct': 0, 'dim2_factors': 0, 'dim3_distinct': 0, 'dim3_factors': 0, 'dim4_distinct': 0, 'dim4_factors': 0, 'dim5_distinct': 0, 'dim5_factors': 0, 'endomorphism_ring_count': 30, 'g': 2, 'galois_groups': ['2T1', '2T1'], 'geom_dim1_distinct': 2, 'geom_dim1_factors': 2, 'geom_dim2_distinct': 0, 'geom_dim2_factors': 0, 'geom_dim3_distinct': 0, 'geom_dim3_factors': 0, 'geom_dim4_distinct': 0, 'geom_dim4_factors': 0, 'geom_dim5_distinct': 0, 'geom_dim5_factors': 0, 'geometric_center_dim': 4, 'geometric_extension_degree': 1, 'geometric_galois_groups': ['2T1', '2T1'], 'geometric_number_fields': ['2.0.4.1', '2.0.8.1'], 'geometric_splitting_field': '4.0.256.1', 'geometric_splitting_polynomials': [[1, 0, 0, 0, 1]], 'group_structure_count': 6, 'has_geom_ss_factor': False, 'has_jacobian': 1, 'has_principal_polarization': 1, 'hyp_count': 102, 'is_cyclic': False, 'is_geometrically_simple': False, 'is_geometrically_squarefree': True, 'is_primitive': True, 'is_simple': False, 'is_squarefree': True, 'is_supersingular': False, 'jacobian_count': 102, 'label': '2.97.s_ko', 'max_divalg_dim': 1, 'max_geom_divalg_dim': 1, 'max_twist_degree': 4, 'newton_coelevation': 2, 'newton_elevation': 0, 'noncyclic_primes': [2, 3], 'number_fields': ['2.0.4.1', '2.0.8.1'], 'p': 97, 'p_rank': 2, 'p_rank_deficit': 0, 'poly': [1, 18, 274, 1746, 9409], 'poly_str': '1 18 274 1746 9409 ', 'primitive_models': [], 'q': 97, 'real_poly': [1, 18, 80], 'simple_distinct': ['1.97.i', '1.97.k'], 'simple_factors': ['1.97.iA', '1.97.kA'], 'simple_multiplicities': [1, 1], 'singular_primes': ['2,-V-13', '3,5*F-7', '3,13*F+2'], 'slopes': ['0A', '0B', '1A', '1B'], 'splitting_field': '4.0.256.1', 'splitting_polynomials': [[1, 0, 0, 0, 1]], 'twist_count': 8, 'twists': [['2.97.as_ko', '2.9409.iq_btxu', 2], ['2.97.ac_ek', '2.9409.iq_btxu', 2], ['2.97.c_ek', '2.9409.iq_btxu', 2], ['2.97.abc_ok', '2.88529281.rps_qnjere', 4], ['2.97.ai_o', '2.88529281.rps_qnjere', 4], ['2.97.i_o', '2.88529281.rps_qnjere', 4], ['2.97.bc_ok', '2.88529281.rps_qnjere', 4]], 'weak_equivalence_count': 36, 'zfv_index': 216, 'zfv_index_factorization': [[2, 3], [3, 3]], 'zfv_is_bass': False, 'zfv_is_maximal': False, 'zfv_plus_index': 1, 'zfv_plus_index_factorization': [], 'zfv_plus_norm': 93312, 'zfv_singular_count': 6, 'zfv_singular_primes': ['2,-V-13', '3,5*F-7', '3,13*F+2']}
-
av_fq_endalg_factors • Show schema
Hide schema
-
id: 130044
{'base_label': '2.97.s_ko', 'extension_degree': 1, 'extension_label': '1.97.i', 'multiplicity': 1}
-
id: 130045
{'base_label': '2.97.s_ko', 'extension_degree': 1, 'extension_label': '1.97.k', 'multiplicity': 1}
-
av_fq_endalg_data • Show schema
Hide schema
{'brauer_invariants': ['0', '0'], 'center': '2.0.4.1', 'center_dim': 2, 'divalg_dim': 1, 'extension_label': '1.97.i', 'galois_group': '2T1', 'places': [['22', '1'], ['75', '1']]}
-
av_fq_endalg_data • Show schema
Hide schema
{'brauer_invariants': ['0', '0'], 'center': '2.0.8.1', 'center_dim': 2, 'divalg_dim': 1, 'extension_label': '1.97.k', 'galois_group': '2T1', 'places': [['17', '1'], ['80', '1']]}