-
av_fq_isog • Show schema
Hide schema
{'abvar_count': 4725, 'abvar_counts': [4725, 38957625, 243174279600, 1516723851659625, 9467908436993761125, 59091527343300453792000, 368790355213364162085869925, 2301619303114884388867236791625, 14364405088331288275144799421073200, 89648251978391176840750593538023065625], 'abvar_counts_str': '4725 38957625 243174279600 1516723851659625 9467908436993761125 59091527343300453792000 368790355213364162085869925 2301619303114884388867236791625 14364405088331288275144799421073200 89648251978391176840750593538023065625 ', 'angle_corank': 0, 'angle_rank': 2, 'angles': [0.0944227114287621, 0.409243695363339], 'center_dim': 4, 'cohen_macaulay_max': 2, 'curve_count': 58, 'curve_counts': [58, 6244, 493216, 38940196, 3076936918, 243087522622, 19203921216202, 1517108916700996, 119851596222502624, 9468276082790296324], 'curve_counts_str': '58 6244 493216 38940196 3076936918 243087522622 19203921216202 1517108916700996 119851596222502624 9468276082790296324 ', 'curves': ['y^2=20*x^6+22*x^5+53*x^4+36*x^2+40*x+41', 'y^2=73*x^6+5*x^5+4*x^4+56*x^3+62*x^2+21*x+39', 'y^2=40*x^6+76*x^5+59*x^4+70*x^3+21*x^2+42*x+22', 'y^2=33*x^6+67*x^5+65*x^4+11*x^3+8*x^2+22*x+27', 'y^2=31*x^6+65*x^5+36*x^4+46*x^3+47*x^2+26*x+60', 'y^2=28*x^6+12*x^5+4*x^4+70*x^3+51*x^2+71*x+52', 'y^2=16*x^6+65*x^5+45*x^4+69*x^3+3*x^2+31*x+70', 'y^2=9*x^6+78*x^5+51*x^4+46*x^3+72*x^2+30*x+56', 'y^2=43*x^6+77*x^5+10*x^4+4*x^3+43*x^2+72*x+65', 'y^2=15*x^6+63*x^5+50*x^4+53*x^3+50*x^2+63*x+15', 'y^2=45*x^6+23*x^5+72*x^4+60*x^3+73*x^2+16*x+66', 'y^2=37*x^6+48*x^5+46*x^4+10*x^3+30*x^2+7*x+23', 'y^2=30*x^6+61*x^5+13*x^4+23*x^3+37*x^2+45*x+70', 'y^2=66*x^6+38*x^5+21*x^4+77*x^3+14*x^2+14*x+3', 'y^2=45*x^6+25*x^5+67*x^4+13*x^3+14*x^2+43*x+59', 'y^2=3*x^6+26*x^5+47*x^4+77*x^3+2*x^2+30*x+65', 'y^2=68*x^6+61*x^5+73*x^4+61*x^2+20*x+58', 'y^2=40*x^6+33*x^5+25*x^4+44*x^3+44*x^2+19*x+78', 'y^2=72*x^6+62*x^5+15*x^4+15*x^2+62*x+72', 'y^2=5*x^6+30*x^5+3*x^4+59*x^3+26*x^2+36*x+27', 'y^2=45*x^6+50*x^5+40*x^4+5*x^3+24*x^2+71*x+54', 'y^2=55*x^6+x^5+41*x^4+7*x^3+41*x^2+x+55', 'y^2=2*x^6+14*x^5+76*x^4+35*x^3+42*x^2+9*x+11', 'y^2=11*x^6+61*x^5+30*x^4+38*x^3+36*x^2+5*x+64', 'y^2=44*x^6+13*x^5+72*x^4+65*x^3+37*x^2+6*x+39', 'y^2=61*x^6+15*x^5+45*x^4+18*x^3+37*x^2+52*x+57', 'y^2=48*x^6+55*x^4+65*x^3+19*x^2+45*x+35', 'y^2=75*x^6+14*x^5+43*x^4+54*x^3+43*x^2+14*x+75', 'y^2=39*x^6+9*x^5+30*x^4+36*x^3+29*x^2+68*x+29', 'y^2=27*x^6+53*x^5+12*x^4+2*x^3+32*x^2+65*x+27', 'y^2=70*x^6+12*x^5+74*x^4+27*x^3+42*x^2+76*x+66', 'y^2=7*x^6+14*x^5+53*x^4+15*x^3+53*x^2+14*x+7', 'y^2=15*x^6+58*x^5+26*x^4+66*x^3+27*x^2+63*x+13', 'y^2=73*x^6+48*x^5+66*x^4+62*x^3+14*x^2+77*x+23', 'y^2=18*x^6+63*x^5+46*x^4+38*x^3+55*x^2+72*x+41', 'y^2=35*x^6+61*x^5+21*x^4+49*x^2+14*x+17', 'y^2=16*x^6+6*x^5+48*x^4+22*x^3+62*x^2+66*x+15', 'y^2=19*x^6+42*x^5+56*x^4+x^3+72*x^2+21*x+74', 'y^2=68*x^6+25*x^5+5*x^4+9*x^3+5*x^2+25*x+68', 'y^2=41*x^6+47*x^5+59*x^4+40*x^3+31*x^2+9*x+57', 'y^2=37*x^6+35*x^5+49*x^4+53*x^3+10*x^2+32*x+58', 'y^2=63*x^6+69*x^5+5*x^4+26*x^3+5*x^2+69*x+63', 'y^2=73*x^6+33*x^5+49*x^4+70*x^3+49*x^2+33*x+73', 'y^2=23*x^6+21*x^5+63*x^4+16*x^3+35*x^2+66*x+40', 'y^2=35*x^6+43*x^5+20*x^4+39*x^3+66*x^2+3*x+78', 'y^2=34*x^6+15*x^5+36*x^4+62*x^3+37*x^2+33*x+1', 'y^2=28*x^6+16*x^5+25*x^4+74*x^3+71*x^2+3*x+25', 'y^2=75*x^6+71*x^5+3*x^4+51*x^3+42*x^2+41*x+1', 'y^2=50*x^6+59*x^5+47*x^4+2*x^3+39*x^2+44*x+39', 'y^2=9*x^6+32*x^5+55*x^4+67*x^3+53*x^2+24*x+36', 'y^2=13*x^6+35*x^5+76*x^4+33*x^3+42*x^2+63*x+61', 'y^2=59*x^6+53*x^5+56*x^4+38*x^3+72*x^2+23', 'y^2=15*x^6+36*x^5+10*x^4+45*x^3+34*x^2+26*x+78', 'y^2=65*x^6+23*x^5+35*x^4+16*x^3+27*x^2+29*x+71', 'y^2=7*x^6+17*x^5+47*x^4+33*x^3+50*x^2+77*x+14', 'y^2=39*x^6+6*x^5+64*x^4+55*x^3+48*x^2+41*x+1', 'y^2=4*x^6+45*x^5+71*x^4+27*x^2+37*x+37', 'y^2=52*x^6+67*x^5+48*x^4+60*x^3+56*x^2+58*x+35', 'y^2=34*x^6+24*x^5+58*x^4+30*x^3+34*x^2+36*x+5', 'y^2=54*x^6+40*x^5+35*x^4+63*x^3+5*x^2+60*x+58', 'y^2=32*x^6+70*x^5+69*x^4+24*x^3+68*x^2+69*x+62', 'y^2=77*x^6+56*x^5+30*x^4+51*x^3+45*x^2+70*x+30', 'y^2=66*x^6+6*x^5+45*x^4+22*x^3+31*x^2+60*x+61', 'y^2=34*x^6+68*x^5+68*x^4+39*x^3+8*x^2+58*x+58', 'y^2=x^6+28*x^5+60*x^4+15*x^3+60*x^2+28*x+1', 'y^2=76*x^6+6*x^5+77*x^3+69*x^2+47*x+63', 'y^2=47*x^6+24*x^5+15*x^4+8*x^3+2*x^2+55*x+71', 'y^2=15*x^6+55*x^5+7*x^4+24*x^3+7*x^2+55*x+15', 'y^2=68*x^6+26*x^5+12*x^4+30*x^3+35*x^2+42*x+59', 'y^2=76*x^6+68*x^5+12*x^4+21*x^3+12*x^2+68*x+76', 'y^2=26*x^6+35*x^5+32*x^4+50*x^3+16*x^2+47*x+41', 'y^2=60*x^6+20*x^5+2*x^4+2*x^3+69*x^2+18*x+48', 'y^2=36*x^6+46*x^5+33*x^4+44*x^3+33*x^2+46*x+36', 'y^2=39*x^6+39*x^5+59*x^4+62*x^3+63*x^2+33*x+53', 'y^2=70*x^6+62*x^5+11*x^4+13*x^3+74*x^2+36*x+30', 'y^2=67*x^6+22*x^5+x^4+40*x^3+68*x^2+6*x+38', 'y^2=70*x^6+44*x^5+23*x^4+12*x^3+43*x^2+68*x+62', 'y^2=50*x^6+33*x^5+57*x^4+78*x^3+57*x^2+33*x+50', 'y^2=48*x^6+61*x^5+42*x^4+12*x^3+67*x^2+13*x+4', 'y^2=47*x^6+55*x^5+78*x^4+3*x^3+9*x^2+50*x+10', 'y^2=34*x^6+70*x^5+12*x^4+52*x^3+10*x^2+75*x+37', 'y^2=31*x^6+49*x^5+35*x^4+66*x^3+51*x^2+33*x+33', 'y^2=8*x^6+x^5+54*x^4+67*x^3+54*x^2+x+8', 'y^2=56*x^6+11*x^5+72*x^4+18*x^3+67*x^2+18*x+56', 'y^2=3*x^6+44*x^5+26*x^4+47*x^3+26*x^2+44*x+3', 'y^2=78*x^6+27*x^5+25*x^4+67*x^3+13*x^2+71*x+61', 'y^2=70*x^6+8*x^5+44*x^4+4*x^3+73*x^2+15*x+43', 'y^2=44*x^6+35*x^5+20*x^4+29*x^3+60*x^2+69*x+39', 'y^2=52*x^6+55*x^5+40*x^4+17*x^3+40*x^2+31*x+37', 'y^2=26*x^6+26*x^5+60*x^4+49*x^3+23*x^2+50*x+28', 'y^2=17*x^6+46*x^5+65*x^4+18*x^3+22*x^2+10*x+48', 'y^2=17*x^6+48*x^5+33*x^4+74*x^3+33*x^2+48*x+17'], 'dim1_distinct': 2, 'dim1_factors': 2, 'dim2_distinct': 0, 'dim2_factors': 0, 'dim3_distinct': 0, 'dim3_factors': 0, 'dim4_distinct': 0, 'dim4_factors': 0, 'dim5_distinct': 0, 'dim5_factors': 0, 'endomorphism_ring_count': 15, 'g': 2, 'galois_groups': ['2T1', '2T1'], 'geom_dim1_distinct': 2, 'geom_dim1_factors': 2, 'geom_dim2_distinct': 0, 'geom_dim2_factors': 0, 'geom_dim3_distinct': 0, 'geom_dim3_factors': 0, 'geom_dim4_distinct': 0, 'geom_dim4_factors': 0, 'geom_dim5_distinct': 0, 'geom_dim5_factors': 0, 'geometric_center_dim': 4, 'geometric_extension_degree': 1, 'geometric_galois_groups': ['2T1', '2T1'], 'geometric_number_fields': ['2.0.3.1', '2.0.291.1'], 'geometric_splitting_field': '4.0.84681.1', 'geometric_splitting_polynomials': [[576, 24, 25, -1, 1]], 'group_structure_count': 3, 'has_geom_ss_factor': False, 'has_jacobian': 1, 'has_principal_polarization': 1, 'hyp_count': 92, 'is_geometrically_simple': False, 'is_geometrically_squarefree': True, 'is_primitive': True, 'is_simple': False, 'is_squarefree': True, 'is_supersingular': False, 'jacobian_count': 92, 'label': '2.79.aw_jj', 'max_divalg_dim': 1, 'max_geom_divalg_dim': 1, 'max_twist_degree': 6, 'newton_coelevation': 2, 'newton_elevation': 0, 'number_fields': ['2.0.3.1', '2.0.291.1'], 'p': 79, 'p_rank': 2, 'p_rank_deficit': 0, 'poly': [1, -22, 243, -1738, 6241], 'poly_str': '1 -22 243 -1738 6241 ', 'primitive_models': [], 'q': 79, 'real_poly': [1, -22, 85], 'simple_distinct': ['1.79.ar', '1.79.af'], 'simple_factors': ['1.79.arA', '1.79.afA'], 'simple_multiplicities': [1, 1], 'singular_primes': ['3,28*F+2', '2,F^2+F+6*V+7'], 'slopes': ['0A', '0B', '1A', '1B'], 'splitting_field': '4.0.84681.1', 'splitting_polynomials': [[576, 24, 25, -1, 1]], 'twist_count': 12, 'twists': [['2.79.am_cv', '2.6241.c_ahib', 2], ['2.79.m_cv', '2.6241.c_ahib', 2], ['2.79.w_jj', '2.6241.c_ahib', 2], ['2.79.ab_fi', '2.493039.gu_cuoc', 3], ['2.79.i_dp', '2.493039.gu_cuoc', 3], ['2.79.as_ip', '2.243087455521.dvgu_cfasreazm', 6], ['2.79.aj_gw', '2.243087455521.dvgu_cfasreazm', 6], ['2.79.ai_dp', '2.243087455521.dvgu_cfasreazm', 6], ['2.79.b_fi', '2.243087455521.dvgu_cfasreazm', 6], ['2.79.j_gw', '2.243087455521.dvgu_cfasreazm', 6], ['2.79.s_ip', '2.243087455521.dvgu_cfasreazm', 6]], 'weak_equivalence_count': 18, 'zfv_index': 432, 'zfv_index_factorization': [[2, 4], [3, 3]], 'zfv_is_bass': False, 'zfv_is_maximal': False, 'zfv_plus_index': 1, 'zfv_plus_index_factorization': [], 'zfv_plus_norm': 7857, 'zfv_singular_count': 4, 'zfv_singular_primes': ['3,28*F+2', '2,F^2+F+6*V+7']}
-
av_fq_endalg_factors • Show schema
Hide schema
-
id: 93068
{'base_label': '2.79.aw_jj', 'extension_degree': 1, 'extension_label': '1.79.ar', 'multiplicity': 1}
-
id: 93069
{'base_label': '2.79.aw_jj', 'extension_degree': 1, 'extension_label': '1.79.af', 'multiplicity': 1}
-
av_fq_endalg_data • Show schema
Hide schema
{'brauer_invariants': ['0', '0'], 'center': '2.0.3.1', 'center_dim': 2, 'divalg_dim': 1, 'extension_label': '1.79.ar', 'galois_group': '2T1', 'places': [['23', '1'], ['55', '1']]}
-
av_fq_endalg_data • Show schema
Hide schema
{'brauer_invariants': ['0', '0'], 'center': '2.0.291.1', 'center_dim': 2, 'divalg_dim': 1, 'extension_label': '1.79.af', 'galois_group': '2T1', 'places': [['76', '1'], ['2', '1']]}