-
av_fq_isog • Show schema
Hide schema
{'abvar_count': 4096, 'abvar_counts': [4096, 26214400, 128955682816, 645956789862400, 3255053579256303616, 16409502109233342054400, 82721176091788656672772096, 416997668111649443083085414400, 2102085056072020767190925101305856, 10596610581838399227198465654784000000], 'abvar_counts_str': '4096 26214400 128955682816 645956789862400 3255053579256303616 16409502109233342054400 82721176091788656672772096 416997668111649443083085414400 2102085056072020767190925101305856 10596610581838399227198465654784000000 ', 'angle_corank': 1, 'angle_rank': 1, 'angles': [0.342551982147457, 0.342551982147457], 'center_dim': 2, 'curve_count': 56, 'curve_counts': [56, 5198, 360296, 25419678, 1804124056, 128098873838, 9095116353736, 645753600924478, 45848501546009336, 3255243552683174798], 'curve_counts_str': '56 5198 360296 25419678 1804124056 128098873838 9095116353736 645753600924478 45848501546009336 3255243552683174798 ', 'curves': ['y^2=21*x^6+69*x^5+54*x^4+26*x^3+38*x^2+27*x+51', 'y^2=12*x^6+53*x^5+19*x^4+62*x^3+28*x^2+66*x+42', 'y^2=29*x^5+7*x^4+66*x^3+5*x^2+23*x+10', 'y^2=9*x^6+57*x^5+43*x^4+12*x^3+43*x^2+57*x+9', 'y^2=21*x^6+11*x^5+68*x^4+25*x^3+35*x^2+22*x+7', 'y^2=56*x^6+66*x^5+52*x^4+59*x^3+31*x^2+63*x+13', 'y^2=36*x^6+23*x^5+10*x^4+8*x^3+35*x^2+40*x+46', 'y^2=22*x^6+20*x^5+30*x^4+2*x^3+30*x^2+20*x+22', 'y^2=28*x^6+29*x^5+39*x^4+43*x^3+39*x^2+29*x+28', 'y^2=33*x^6+19*x^5+48*x^4+7*x^3+27*x^2+21*x+63', 'y^2=36*x^6+44*x^5+4*x^4+8*x^3+21*x^2+23*x+13', 'y^2=9*x^6+24*x^5+2*x^4+8*x^3+2*x^2+24*x+9', 'y^2=5*x^6+54*x^4+54*x^2+5', 'y^2=23*x^6+31*x^5+60*x^4+58*x^3+60*x^2+31*x+23', 'y^2=51*x^6+47*x^5+25*x^4+54*x^3+30*x^2+62*x+62', 'y^2=20*x^6+61*x^5+64*x^4+47*x^3+5*x^2+63*x+19', 'y^2=20*x^6+20*x^5+59*x^4+51*x^3+29*x^2+16*x+21', 'y^2=21*x^6+51*x^5+36*x^4+4*x^3+61*x^2+31*x+61', 'y^2=21*x^6+45*x^4+45*x^2+21', 'y^2=17*x^6+37*x^5+30*x^4+19*x^3+63*x^2+19*x+16', 'y^2=65*x^6+38*x^5+68*x^4+46*x^3+68*x^2+38*x+65', 'y^2=69*x^6+2*x^5+49*x^4+53*x^3+31*x^2+28*x+5', 'y^2=56*x^6+35*x^5+3*x^4+41*x^3+40*x^2+17*x+39', 'y^2=7*x^6+59*x^5+30*x^4+62*x^3+30*x^2+59*x+7', 'y^2=6*x^6+26*x^4+26*x^2+6', 'y^2=63*x^6+15*x^5+48*x^4+29*x^3+63*x^2+68*x+56', 'y^2=35*x^6+51*x^5+27*x^4+57*x^3+37*x^2+35*x+39', 'y^2=52*x^6+31*x^5+59*x^4+65*x^3+63*x^2+69*x+68', 'y^2=28*x^6+50*x^5+30*x^4+7*x^3+61*x^2+59*x+41', 'y^2=5*x^6+2*x^5+63*x^4+38*x^3+63*x^2+2*x+5', 'y^2=56*x^6+43*x^5+67*x^4+46*x^3+26*x^2+24*x+28', 'y^2=24*x^6+41*x^5+57*x^4+61*x^3+57*x^2+41*x+24', 'y^2=65*x^6+60*x^5+52*x^4+65*x^3+46*x^2+39*x+7', 'y^2=69*x^6+42*x^5+56*x^4+46*x^3+31*x^2+62*x+62', 'y^2=53*x^6+30*x^5+58*x^4+40*x^3+23*x^2+6*x+24', 'y^2=63*x^5+29*x^4+12*x^3+20*x^2+45*x+36', 'y^2=38*x^6+35*x^5+33*x^4+49*x^3+33*x^2+35*x+38', 'y^2=46*x^6+32*x^5+2*x^4+18*x^3+49*x^2+38*x+47', 'y^2=19*x^6+31*x^5+31*x^4+24*x^3+41*x^2+13*x+48', 'y^2=3*x^6+5*x^5+51*x^4+28*x^3+44*x^2+14*x+43', 'y^2=38*x^5+20*x^4+63*x^3+46*x^2+5*x+42', 'y^2=31*x^6+40*x^5+51*x^4+29*x^3+51*x^2+40*x+31', 'y^2=37*x^6+20*x^5+31*x^4+46*x^3+23*x^2+43*x+6', 'y^2=6*x^6+41*x^5+27*x^4+46*x^3+27*x^2+41*x+6', 'y^2=41*x^6+45*x^5+29*x^4+28*x^3+29*x^2+45*x+41', 'y^2=34*x^6+58*x^5+12*x^4+70*x^3+12*x^2+58*x+34', 'y^2=66*x^6+45*x^5+15*x^4+27*x^3+15*x^2+45*x+66', 'y^2=32*x^6+18*x^5+48*x^4+39*x^3+19*x^2+30*x+29', 'y^2=26*x^6+21*x^5+16*x^4+38*x^3+7*x^2+4*x+2', 'y^2=33*x^6+41*x^5+10*x^4+6*x^3+x^2+44*x+4', 'y^2=38*x^6+31*x^4+31*x^2+38', 'y^2=37*x^6+63*x^5+10*x^4+25*x^3+15*x^2+53*x+45', 'y^2=45*x^6+32*x^5+49*x^4+7*x^3+64*x^2+5*x+57', 'y^2=56*x^6+63*x^5+55*x^4+61*x^3+55*x^2+63*x+56', 'y^2=40*x^6+22*x^5+21*x^4+57*x^3+19*x^2+8*x+46', 'y^2=26*x^6+31*x^5+22*x^4+26*x^3+22*x^2+31*x+26', 'y^2=6*x^6+49*x^4+49*x^2+6', 'y^2=70*x^6+55*x^5+17*x^4+43*x^3+14*x^2+33*x+69', 'y^2=50*x^6+42*x^4+42*x^2+50', 'y^2=16*x^6+70*x^4+70*x^2+16', 'y^2=5*x^6+7*x^5+51*x^4+28*x^3+51*x^2+7*x+5', 'y^2=55*x^6+36*x^5+69*x^4+32*x^3+65*x^2+40*x+65', 'y^2=58*x^6+50*x^4+50*x^2+58', 'y^2=68*x^6+12*x^5+23*x^4+7*x^3+33*x^2+42*x+65', 'y^2=26*x^6+20*x^5+6*x^4+19*x^3+54*x^2+58*x+68', 'y^2=14*x^6+32*x^5+36*x^4+55*x^3+36*x^2+32*x+14', 'y^2=35*x^6+35*x^5+50*x^4+56*x^3+55*x^2+15*x+37', 'y^2=35*x^6+18*x^5+32*x^4+32*x^2+18*x+35', 'y^2=3*x^6+16*x^5+23*x^4+35*x^3+23*x^2+16*x+3', 'y^2=56*x^6+25*x^5+32*x^4+10*x^3+8*x^2+6*x+63', 'y^2=65*x^6+38*x^5+69*x^4+46*x^3+69*x^2+38*x+65', 'y^2=22*x^6+67*x^5+64*x^4+26*x^3+25*x^2+14*x+31', 'y^2=49*x^6+27*x^5+37*x^4+5*x^3+30*x^2+8*x+9', 'y^2=46*x^6+61*x^5+70*x^4+43*x^3+11*x^2+68*x+47', 'y^2=45*x^6+70*x^5+54*x^4+34*x^3+54*x^2+70*x+45', 'y^2=15*x^6+20*x^5+39*x^4+39*x^2+20*x+15', 'y^2=42*x^6+49*x^5+36*x^4+29*x^3+15*x^2+9*x+59', 'y^2=57*x^6+17*x^5+64*x^4+64*x^3+64*x^2+17*x+57', 'y^2=62*x^6+47*x^5+37*x^4+6*x^3+37*x^2+47*x+62', 'y^2=70*x^5+35*x^4+15*x^3+62*x^2+31*x', 'y^2=12*x^6+64*x^5+30*x^4+69*x^3+30*x^2+64*x+12', 'y^2=27*x^6+10*x^5+40*x^4+34*x^3+40*x^2+10*x+27', 'y^2=8*x^6+36*x^5+49*x^4+29*x^3+2*x^2+49*x+32', 'y^2=69*x^6+34*x^5+50*x^4+47*x^3+56*x^2+60*x+33', 'y^2=x^5+49*x^4+16*x^3+24*x^2+54*x', 'y^2=5*x^6+37*x^5+15*x^4+48*x^3+25*x^2+16*x+10', 'y^2=34*x^6+39*x^5+29*x^4+60*x^3+41*x^2+45*x+61', 'y^2=23*x^6+29*x^5+63*x^4+63*x^3+63*x^2+29*x+23'], 'dim1_distinct': 1, 'dim1_factors': 2, 'dim2_distinct': 0, 'dim2_factors': 0, 'dim3_distinct': 0, 'dim3_factors': 0, 'dim4_distinct': 0, 'dim4_factors': 0, 'dim5_distinct': 0, 'dim5_factors': 0, 'g': 2, 'galois_groups': ['2T1'], 'geom_dim1_distinct': 1, 'geom_dim1_factors': 2, 'geom_dim2_distinct': 0, 'geom_dim2_factors': 0, 'geom_dim3_distinct': 0, 'geom_dim3_factors': 0, 'geom_dim4_distinct': 0, 'geom_dim4_factors': 0, 'geom_dim5_distinct': 0, 'geom_dim5_factors': 0, 'geometric_center_dim': 2, 'geometric_extension_degree': 1, 'geometric_galois_groups': ['2T1'], 'geometric_number_fields': ['2.0.55.1'], 'geometric_splitting_field': '2.0.55.1', 'geometric_splitting_polynomials': [[14, -1, 1]], 'has_geom_ss_factor': False, 'has_jacobian': 1, 'has_principal_polarization': 1, 'hyp_count': 88, 'is_geometrically_simple': False, 'is_geometrically_squarefree': False, 'is_primitive': True, 'is_simple': False, 'is_squarefree': False, 'is_supersingular': False, 'jacobian_count': 88, 'label': '2.71.aq_hy', 'max_divalg_dim': 1, 'max_geom_divalg_dim': 1, 'max_twist_degree': 6, 'newton_coelevation': 2, 'newton_elevation': 0, 'number_fields': ['2.0.55.1'], 'p': 71, 'p_rank': 2, 'p_rank_deficit': 0, 'poly': [1, -16, 206, -1136, 5041], 'poly_str': '1 -16 206 -1136 5041 ', 'primitive_models': [], 'q': 71, 'real_poly': [1, -16, 64], 'simple_distinct': ['1.71.ai'], 'simple_factors': ['1.71.aiA', '1.71.aiB'], 'simple_multiplicities': [2], 'slopes': ['0A', '0B', '1A', '1B'], 'splitting_field': '2.0.55.1', 'splitting_polynomials': [[14, -1, 1]], 'twist_count': 6, 'twists': [['2.71.a_da', '2.5041.ga_xxu', 2], ['2.71.q_hy', '2.5041.ga_xxu', 2], ['2.71.i_ah', '2.357911.dns_eroug', 3], ['2.71.a_ada', '2.25411681.lvo_fqfbmc', 4], ['2.71.ai_ah', '2.128100283921.adcfya_dpummdvvy', 6]]}
-
av_fq_endalg_factors • Show schema
Hide schema
{'base_label': '2.71.aq_hy', 'extension_degree': 1, 'extension_label': '1.71.ai', 'multiplicity': 2}
-
av_fq_endalg_data • Show schema
Hide schema
{'brauer_invariants': ['0', '0'], 'center': '2.0.55.1', 'center_dim': 2, 'divalg_dim': 1, 'extension_label': '1.71.ai', 'galois_group': '2T1', 'places': [['33', '1'], ['37', '1']]}