-
av_fq_isog • Show schema
Hide schema
{'abvar_count': 4356, 'abvar_counts': [4356, 26501904, 128862332676, 645694933238784, 3254946491424644676, 16409577180796409610000, 82721272051535148268336836, 416997687035184112385050558464, 2102085023399070471101953767627396, 10596610555758961021828074599367258384], 'abvar_counts_str': '4356 26501904 128862332676 645694933238784 3254946491424644676 16409577180796409610000 82721272051535148268336836 416997687035184112385050558464 2102085023399070471101953767627396 10596610555758961021828074599367258384 ', 'angle_corank': 1, 'angle_rank': 1, 'angles': [0.384128557437865, 0.384128557437865], 'center_dim': 2, 'curve_count': 60, 'curve_counts': [60, 5254, 360036, 25409374, 1804064700, 128099459878, 9095126904420, 645753630229054, 45848500833380796, 3255243544671658054], 'curve_counts_str': '60 5254 360036 25409374 1804064700 128099459878 9095126904420 645753630229054 45848500833380796 3255243544671658054 ', 'curves': ['y^2=64*x^6+23*x^5+19*x^4+4*x^3+20*x^2+66*x+12', 'y^2=40*x^6+61*x^5+7*x^4+31*x^3+7*x^2+61*x+40', 'y^2=13*x^6+43*x^5+42*x^4+4*x^3+41*x^2+6*x+23', 'y^2=67*x^6+22*x^5+62*x^4+3*x^3+63*x^2+13*x+23', 'y^2=2*x^6+32*x^5+56*x^4+11*x^3+51*x^2+49*x+10', 'y^2=51*x^6+2*x^5+67*x^4+52*x^3+21*x^2+64*x+23', 'y^2=68*x^6+31*x^5+44*x^4+48*x^3+47*x^2+28*x+35', 'y^2=61*x^6+2*x^5+x^4+35*x^3+51*x^2+42*x+65', 'y^2=39*x^6+9*x^5+63*x^4+11*x^3+63*x^2+9*x+39', 'y^2=6*x^6+56*x^5+11*x^4+31*x^3+19*x^2+24*x+17', 'y^2=12*x^6+6*x^5+19*x^4+24*x^3+19*x^2+6*x+12', 'y^2=32*x^5+38*x^4+14*x^3+55*x^2+4*x+55', 'y^2=15*x^6+48*x^5+53*x^4+15*x^3+53*x^2+48*x+15', 'y^2=19*x^6+31*x^5+6*x^4+2*x^3+19*x^2+61*x+29', 'y^2=5*x^6+25*x^5+27*x^4+49*x^3+58*x^2+34*x+5', 'y^2=63*x^6+67*x^5+58*x^4+15*x^3+58*x^2+67*x+63', 'y^2=39*x^6+3*x^5+26*x^4+7*x^3+49*x^2+17*x+48', 'y^2=19*x^6+61*x^5+x^4+5*x^3+x^2+61*x+19', 'y^2=47*x^6+46*x^5+44*x^4+65*x^3+44*x^2+46*x+47', 'y^2=44*x^6+17*x^5+22*x^4+40*x^3+63*x^2+31*x+46', 'y^2=29*x^6+11*x^5+54*x^4+37*x^3+50*x^2+33*x+49', 'y^2=30*x^6+37*x^5+41*x^4+9*x^3+41*x^2+37*x+30', 'y^2=14*x^6+12*x^5+61*x^4+46*x^3+7*x^2+57*x+28', 'y^2=31*x^6+61*x^5+4*x^4+7*x^3+67*x^2+28*x+36', 'y^2=28*x^6+10*x^4+10*x^2+28', 'y^2=58*x^6+34*x^5+37*x^4+14*x^3+37*x^2+34*x+58', 'y^2=23*x^6+44*x^5+33*x^4+4*x^3+33*x^2+44*x+23', 'y^2=7*x^6+69*x^5+24*x^4+38*x^3+33*x^2+45*x+31', 'y^2=34*x^6+69*x^5+43*x^4+61*x^3+8*x^2+49*x+26', 'y^2=30*x^6+63*x^5+39*x^4+24*x^3+39*x^2+63*x+30', 'y^2=48*x^6+39*x^5+x^4+28*x^3+18*x^2+69*x+54', 'y^2=23*x^6+31*x^5+16*x^4+45*x^3+16*x^2+31*x+23', 'y^2=8*x^6+22*x^5+64*x^4+9*x^3+58*x^2+44*x+50', 'y^2=40*x^6+8*x^5+41*x^4+41*x^3+69*x^2+48*x+16', 'y^2=55*x^6+43*x^5+25*x^4+17*x^3+54*x^2+10*x+59', 'y^2=26*x^6+53*x^5+57*x^4+31*x^3+66*x^2+26*x+60', 'y^2=62*x^6+28*x^5+6*x^4+44*x^3+61*x^2+2*x+44', 'y^2=14*x^6+16*x^5+62*x^4+20*x^3+62*x^2+16*x+14', 'y^2=68*x^6+30*x^5+13*x^4+7*x^3+26*x^2+49*x+47', 'y^2=41*x^6+16*x^4+16*x^2+41', 'y^2=31*x^6+12*x^5+55*x^4+52*x^3+46*x^2+59*x+37', 'y^2=18*x^6+65*x^5+18*x^4+35*x^3+35*x^2+26*x+19', 'y^2=9*x^6+57*x^5+60*x^4+6*x^3+53*x^2+46*x+49', 'y^2=61*x^6+44*x^5+58*x^4+66*x^3+3*x^2+36*x+35', 'y^2=6*x^6+42*x^5+12*x^4+54*x^3+40*x^2+17*x+25', 'y^2=15*x^6+58*x^5+15*x^4+41*x^3+57*x^2+65*x+44', 'y^2=65*x^6+13*x^5+2*x^4+43*x^3+57*x^2+69*x+70', 'y^2=43*x^6+61*x^5+59*x^4+65*x^3+31*x^2+23*x+49', 'y^2=69*x^6+48*x^5+9*x^4+32*x^3+50*x^2+65*x+34', 'y^2=42*x^5+41*x^4+14*x^3+41*x^2+42*x', 'y^2=61*x^6+56*x^5+9*x^4+68*x^3+9*x^2+56*x+61', 'y^2=47*x^6+20*x^5+12*x^4+39*x^3+34*x^2+59*x+31', 'y^2=14*x^6+36*x^5+65*x^4+35*x^3+7*x^2+10*x+13', 'y^2=70*x^6+25*x^5+44*x^4+31*x^3+41*x^2+37*x+52', 'y^2=56*x^6+25*x^5+31*x^4+40*x^3+14*x^2+26*x+52', 'y^2=23*x^6+23*x^5+62*x^4+46*x^3+46*x^2+7*x+59', 'y^2=61*x^6+58*x^4+58*x^2+61', 'y^2=14*x^6+17*x^5+19*x^4+17*x^3+19*x^2+17*x+14', 'y^2=4*x^6+51*x^5+14*x^4+60*x^3+24*x^2+35*x+44', 'y^2=38*x^6+67*x^5+48*x^4+9*x^3+3*x^2+56*x+8', 'y^2=35*x^6+3*x^5+54*x^4+46*x^3+37*x^2+12*x+67', 'y^2=32*x^6+66*x^5+66*x^4+32*x^3+30*x^2+33*x+22', 'y^2=43*x^6+21*x^5+6*x^4+10*x^3+6*x^2+21*x+43', 'y^2=6*x^5+40*x^4+14*x^3+40*x^2+6*x', 'y^2=62*x^6+9*x^5+3*x^4+43*x^3+11*x^2+8*x+28', 'y^2=4*x^6+57*x^5+21*x^4+12*x^3+28*x^2+48*x+69', 'y^2=4*x^6+62*x^5+26*x^4+24*x^3+66*x^2+63*x+60', 'y^2=21*x^6+50*x^5+16*x^4+7*x^3+16*x^2+50*x+21', 'y^2=49*x^6+45*x^5+56*x^4+2*x^3+59*x^2+50*x+19', 'y^2=59*x^6+28*x^5+23*x^4+39*x^3+23*x^2+28*x+59', 'y^2=66*x^6+x^5+7*x^4+67*x^3+56*x^2+18*x+55', 'y^2=21*x^6+22*x^5+51*x^4+4*x^3+64*x^2+13*x+2', 'y^2=18*x^6+30*x^5+47*x^4+4*x^3+55*x^2+37*x+29', 'y^2=11*x^6+57*x^5+45*x^4+6*x^3+45*x^2+57*x+11', 'y^2=8*x^6+39*x^5+43*x^4+4*x^3+43*x^2+39*x+8', 'y^2=29*x^6+32*x^5+23*x^4+57*x^3+7*x^2+49*x+3', 'y^2=17*x^6+9*x^5+66*x^4+13*x^3+66*x^2+9*x+17', 'y^2=20*x^6+34*x^5+5*x^4+x^3+5*x^2+34*x+20', 'y^2=6*x^6+62*x^5+5*x^4+66*x^3+5*x^2+62*x+6', 'y^2=33*x^6+56*x^4+56*x^2+33', 'y^2=65*x^6+67*x^5+41*x^4+24*x^3+24*x^2+10*x+42', 'y^2=34*x^6+32*x^5+2*x^4+15*x^3+30*x^2+28*x+3', 'y^2=54*x^6+58*x^5+47*x^4+22*x^3+47*x^2+58*x+54', 'y^2=60*x^6+11*x^5+61*x^4+19*x^3+23*x^2+64*x+39', 'y^2=48*x^6+57*x^5+8*x^4+58*x^3+67*x^2+29*x+15', 'y^2=47*x^6+12*x^5+16*x^4+64*x^3+70*x^2+52*x+11', 'y^2=7*x^6+40*x^5+20*x^4+29*x^3+49*x^2+2*x+10', 'y^2=37*x^6+16*x^5+2*x^4+20*x^3+49*x^2+19*x+27', 'y^2=18*x^6+47*x^5+53*x^4+x^3+29*x^2+35*x+42', 'y^2=x^6+17*x^5+70*x^4+61*x^3+3*x^2+26*x+18', 'y^2=53*x^6+x^5+37*x^4+46*x^3+68*x^2+45*x+50', 'y^2=37*x^6+43*x^5+32*x^4+38*x^3+32*x^2+43*x+37', 'y^2=44*x^6+44*x^5+7*x^4+60*x^3+14*x^2+34*x+68', 'y^2=45*x^6+26*x^5+10*x^4+30*x^3+57*x^2+68*x+10', 'y^2=41*x^6+17*x^5+60*x^4+51*x^3+60*x^2+17*x+41', 'y^2=44*x^6+38*x^5+27*x^4+38*x^3+41*x^2+49*x+52', 'y^2=47*x^6+68*x^5+19*x^4+47*x^3+9*x^2+66*x+67', 'y^2=52*x^6+21*x^5+16*x^4+44*x^3+47*x^2+21*x+3', 'y^2=31*x^6+47*x^5+2*x^4+24*x^3+2*x^2+47*x+31', 'y^2=70*x^6+18*x^5+54*x^4+68*x^3+8*x^2+60*x+67'], 'dim1_distinct': 1, 'dim1_factors': 2, 'dim2_distinct': 0, 'dim2_factors': 0, 'dim3_distinct': 0, 'dim3_factors': 0, 'dim4_distinct': 0, 'dim4_factors': 0, 'dim5_distinct': 0, 'dim5_factors': 0, 'g': 2, 'galois_groups': ['2T1'], 'geom_dim1_distinct': 1, 'geom_dim1_factors': 2, 'geom_dim2_distinct': 0, 'geom_dim2_factors': 0, 'geom_dim3_distinct': 0, 'geom_dim3_factors': 0, 'geom_dim4_distinct': 0, 'geom_dim4_factors': 0, 'geom_dim5_distinct': 0, 'geom_dim5_factors': 0, 'geometric_center_dim': 2, 'geometric_extension_degree': 1, 'geometric_galois_groups': ['2T1'], 'geometric_number_fields': ['2.0.248.1'], 'geometric_splitting_field': '2.0.248.1', 'geometric_splitting_polynomials': [[62, 0, 1]], 'has_geom_ss_factor': False, 'has_jacobian': 1, 'has_principal_polarization': 1, 'hyp_count': 100, 'is_geometrically_simple': False, 'is_geometrically_squarefree': False, 'is_primitive': True, 'is_simple': False, 'is_squarefree': False, 'is_supersingular': False, 'jacobian_count': 100, 'label': '2.71.am_gw', 'max_divalg_dim': 1, 'max_geom_divalg_dim': 1, 'max_twist_degree': 6, 'newton_coelevation': 2, 'newton_elevation': 0, 'number_fields': ['2.0.248.1'], 'p': 71, 'p_rank': 2, 'p_rank_deficit': 0, 'poly': [1, -12, 178, -852, 5041], 'poly_str': '1 -12 178 -852 5041 ', 'primitive_models': [], 'q': 71, 'real_poly': [1, -12, 36], 'simple_distinct': ['1.71.ag'], 'simple_factors': ['1.71.agA', '1.71.agB'], 'simple_multiplicities': [2], 'slopes': ['0A', '0B', '1A', '1B'], 'splitting_field': '2.0.248.1', 'splitting_polynomials': [[62, 0, 1]], 'twist_count': 6, 'twists': [['2.71.a_ec', '2.5041.ie_bfny', 2], ['2.71.m_gw', '2.5041.ie_bfny', 2], ['2.71.g_abj', '2.357911.dds_eaxig', 3], ['2.71.a_aec', '2.25411681.adku_ekdkmo', 4], ['2.71.ag_abj', '2.128100283921.abuxaa_cbaxhqhvy', 6]]}
-
av_fq_endalg_factors • Show schema
Hide schema
{'base_label': '2.71.am_gw', 'extension_degree': 1, 'extension_label': '1.71.ag', 'multiplicity': 2}
-
av_fq_endalg_data • Show schema
Hide schema
{'brauer_invariants': ['0', '0'], 'center': '2.0.248.1', 'center_dim': 2, 'divalg_dim': 1, 'extension_label': '1.71.ag', 'galois_group': '2T1', 'places': [['68', '1'], ['3', '1']]}