-
av_fq_isog • Show schema
Hide schema
{'abvar_count': 2649, 'abvar_counts': [2649, 16315191, 68719584492, 281559424997691, 1152972791571810999, 4722381292753126898064, 19342812465359708165783589, 79228160199598844333193068979, 324518553658426705819712766907092, 1329227997384074407249099923104502951], 'abvar_counts_str': '2649 16315191 68719584492 281559424997691 1152972791571810999 4722381292753126898064 19342812465359708165783589 79228160199598844333193068979 324518553658426705819712766907092 1329227997384074407249099923104502951 ', 'angle_corank': 1, 'angle_rank': 1, 'angles': [0.0943151045542547, 0.239018228779079], 'center_dim': 4, 'cohen_macaulay_max': 1, 'curve_count': 38, 'curve_counts': [38, 3982, 262145, 16782250, 1073789588, 68719692247, 4398046363658, 281474968487314, 18014398509481985, 1152921505993895902], 'curve_counts_str': '38 3982 262145 16782250 1073789588 68719692247 4398046363658 281474968487314 18014398509481985 1152921505993895902 ', 'curves': ['y^2+(x^3+(a^4+a^2)*x+a^4+a^2)*y=(a^5+a^4+a^3+a+1)*x^6+(a^5+1)*x^5+(a^5+1)*x^4+(a^5+1)*x^3+(a^4+a^3+a^2+a+1)*x^2+(a^4+a^3+a+1)*x+a^4+a+1', 'y^2+(x^3+a^2*x+a^2)*y=(a^3+a^2+a)*x^6+(a^5+a^4+a^3)*x^5+(a^5+a^4+a^3)*x^4+(a^5+a^4+a^3)*x^3+(a^3+a^2+1)*x^2+(a^5+a^4+a^2)*x+a^5+a^4+a^2', 'y^2+(x^3+(a^5+a^2)*x+a^5+a^2)*y=(a^5+a^4+a^2)*x^5+(a^5+a^4+a^2)*x^4+(a^5+a^2+a+1)*x^3+(a^4+a^3+a^2+a+1)*x+a^4', 'y^2+(x^3+(a^5+1)*x+a^5+1)*y=(a^4+a^2+a)*x^5+(a^4+a^2+a)*x^4+(a^5+a^2)*x^3+(a^5+a^4+a^3+1)*x+a^5+a^4+a^2+a+1', 'y^2+(x^3+(a^4+a+1)*x+a^4+a+1)*y=(a^4+a^2+1)*x^5+(a^4+a^2+1)*x^4+(a^3+a+1)*x^3+(a^5+a^3+a^2+1)*x+a^5+a^3+a^2+a', 'y^2+(x^3+(a^5+a^4)*x+a^5+a^4)*y=(a^5+a+1)*x^5+(a^5+a+1)*x^4+(a^5+1)*x^3+(a^4+a^3+a^2)*x+a^4+a+1', 'y^2+(x^3+(a^5+a^4+a)*x+a^5+a^4+a)*y=(a^5+a^2+a)*x^5+(a^5+a^2+a)*x^4+(a^4+a^3+a^2+a)*x^3+(a^5+a^4+a^3+a+1)*x+a^5+a^4+a^3+a^2+a', 'y^2+(x^3+(a^2+a)*x+a^2+a)*y=(a^5+a^4+a^2)*x^5+(a^5+a^4+a^2)*x^4+(a^5+a^4)*x^3+(a^5+a^4+a^3+a^2)*x+a^5+a^4+a', 'y^2+(x^3+a*x+a)*y=(a^5+a^2+1)*x^5+(a^5+a^2+1)*x^4+(a^5+a^4+a^3)*x^3+(a^4+a^3)*x+a^3+1', 'y^2+(x^3+(a^5+a^2+a+1)*x+a^5+a^2+a+1)*y=(a^5+a+1)*x^5+(a^5+a+1)*x^4+(a^4+a^2)*x^3+(a^3+a)*x+a^2', 'y^2+(x^3+(a^5+a^4+a^2+a+1)*x+a^5+a^4+a^2+a+1)*y=(a^2+a+1)*x^5+(a^2+a+1)*x^4+(a^3+a^2)*x^3+(a^4+a^3+1)*x+a^5+a^3+a', 'y^2+(x^3+(a^4+a^2)*x+a^4+a^2)*y=(a^4+a^2+a)*x^5+(a^4+a^2+a)*x^4+(a^2+a)*x^3+(a^3+a^2+1)*x+a', 'y^2+(x^3+a^4*x+a^4)*y=(a^5+a^4+1)*x^5+(a^5+a^4+1)*x^4+(a^5+a^4+a^3+a^2+1)*x^3+(a^5+a^4+a^3+a)*x+a^5+a^3', 'y^2+(x^3+a^2*x+a^2)*y=a^5*x^5+a^5*x^4+(a^4+a^3+a^2+1)*x^3+(a^5+a^3+a^2)*x+a^4+a^3+a'], 'dim1_distinct': 0, 'dim1_factors': 0, 'dim2_distinct': 1, 'dim2_factors': 1, 'dim3_distinct': 0, 'dim3_factors': 0, 'dim4_distinct': 0, 'dim4_factors': 0, 'dim5_distinct': 0, 'dim5_factors': 0, 'endomorphism_ring_count': 2, 'g': 2, 'galois_groups': ['4T2'], 'geom_dim1_distinct': 1, 'geom_dim1_factors': 2, 'geom_dim2_distinct': 0, 'geom_dim2_factors': 0, 'geom_dim3_distinct': 0, 'geom_dim3_factors': 0, 'geom_dim4_distinct': 0, 'geom_dim4_factors': 0, 'geom_dim5_distinct': 0, 'geom_dim5_factors': 0, 'geometric_center_dim': 2, 'geometric_extension_degree': 6, 'geometric_galois_groups': ['2T1'], 'geometric_number_fields': ['2.0.39.1'], 'geometric_splitting_field': '2.0.39.1', 'geometric_splitting_polynomials': [[10, -1, 1]], 'group_structure_count': 1, 'has_geom_ss_factor': False, 'has_jacobian': 1, 'has_principal_polarization': 1, 'hyp_count': 14, 'is_geometrically_simple': False, 'is_geometrically_squarefree': False, 'is_primitive': True, 'is_simple': True, 'is_squarefree': True, 'is_supersingular': False, 'jacobian_count': 14, 'label': '2.64.abb_lv', 'max_divalg_dim': 1, 'max_geom_divalg_dim': 1, 'max_twist_degree': 12, 'newton_coelevation': 2, 'newton_elevation': 0, 'number_fields': ['4.0.1521.1'], 'p': 2, 'p_rank': 2, 'p_rank_deficit': 0, 'poly': [1, -27, 307, -1728, 4096], 'poly_str': '1 -27 307 -1728 4096 ', 'primitive_models': [], 'q': 64, 'real_poly': [1, -27, 179], 'simple_distinct': ['2.64.abb_lv'], 'simple_factors': ['2.64.abb_lvA'], 'simple_multiplicities': [1], 'singular_primes': ['17,75*F+18*V-480'], 'slopes': ['0A', '0B', '1A', '1B'], 'splitting_field': '4.0.1521.1', 'splitting_polynomials': [[9, 3, 4, -1, 1]], 'twist_count': 4, 'twists': [['2.64.bb_lv', '2.4096.ael_nnd', 2], ['2.64.a_el', '2.262144.a_gdkl', 3], ['2.64.bb_lv', '2.262144.a_gdkl', 3], ['2.64.a_ael', '2.4722366482869645213696.bfiqrrxkw_pbvtotmemtedsgpt', 12]], 'weak_equivalence_count': 2, 'zfv_index': 17, 'zfv_index_factorization': [[17, 1]], 'zfv_is_bass': True, 'zfv_is_maximal': False, 'zfv_plus_index': 1, 'zfv_plus_index_factorization': [], 'zfv_plus_norm': 2601, 'zfv_singular_count': 2, 'zfv_singular_primes': ['17,75*F+18*V-480']}
-
av_fq_endalg_factors • Show schema
Hide schema
-
id: 61861
{'base_label': '2.64.abb_lv', 'extension_degree': 1, 'extension_label': '2.64.abb_lv', 'multiplicity': 1}
-
id: 61862
{'base_label': '2.64.abb_lv', 'extension_degree': 2, 'extension_label': '2.4096.ael_nnd', 'multiplicity': 1}
-
id: 61863
{'base_label': '2.64.abb_lv', 'extension_degree': 3, 'extension_label': '2.262144.a_gdkl', 'multiplicity': 1}
-
id: 61864
{'base_label': '2.64.abb_lv', 'extension_degree': 6, 'extension_label': '1.68719476736.gdkl', 'multiplicity': 2}
-
av_fq_endalg_data • Show schema
Hide schema
{'brauer_invariants': ['0', '0'], 'center': '4.0.1521.1', 'center_dim': 4, 'divalg_dim': 1, 'extension_label': '2.64.abb_lv', 'galois_group': '4T2', 'places': [['1', '1', '0', '0'], ['3/4', '0', '1', '1/4']]}
-
av_fq_endalg_data • Show schema
Hide schema
{'brauer_invariants': ['0', '0'], 'center': '4.0.1521.1', 'center_dim': 4, 'divalg_dim': 1, 'extension_label': '2.4096.ael_nnd', 'galois_group': '4T2', 'places': [['3/4', '0', '1', '1/4'], ['1', '1', '0', '0']]}
-
av_fq_endalg_data • Show schema
Hide schema
{'brauer_invariants': ['0', '0'], 'center': '4.0.1521.1', 'center_dim': 4, 'divalg_dim': 1, 'extension_label': '2.262144.a_gdkl', 'galois_group': '4T2', 'places': [['3/4', '0', '1', '1/4'], ['1', '1', '0', '0']]}
-
av_fq_endalg_data • Show schema
Hide schema
{'brauer_invariants': ['0', '0'], 'center': '2.0.39.1', 'center_dim': 2, 'divalg_dim': 1, 'extension_label': '1.68719476736.gdkl', 'galois_group': '2T1', 'places': [['1', '1'], ['0', '1']]}