-
av_fq_isog • Show schema
Hide schema
{'abvar_count': 2251, 'abvar_counts': [2251, 5067001, 10779012544, 23838015291561, 52599132590788411, 116187111423709351936, 256666986187685419291579, 566977480505797528896302025, 1252453015827221310271320212416, 2766668749303339577549450571904921], 'abvar_counts_str': '2251 5067001 10779012544 23838015291561 52599132590788411 116187111423709351936 256666986187685419291579 566977480505797528896302025 1252453015827221310271320212416 2766668749303339577549450571904921 ', 'angle_corank': 1, 'angle_rank': 1, 'angles': [0.321832721483378, 0.678167278516622], 'center_dim': 4, 'cohen_macaulay_max': 1, 'curve_count': 48, 'curve_counts': [48, 2292, 103824, 4885156, 229345008, 10778809758, 506623120464, 23811291198148, 1119130473102768, 52599132945746772], 'curve_counts_str': '48 2292 103824 4885156 229345008 10778809758 506623120464 23811291198148 1119130473102768 52599132945746772 ', 'curves': ['y^2=11*x^6+16*x^5+39*x^4+30*x^3+38*x^2+31*x+3', 'y^2=8*x^6+33*x^5+7*x^4+9*x^3+2*x^2+14*x+15', 'y^2=6*x^6+43*x^5+11*x^4+26*x^3+41*x^2+19*x+44', 'y^2=30*x^6+27*x^5+8*x^4+36*x^3+17*x^2+x+32', 'y^2=20*x^6+13*x^5+23*x^4+3*x^3+22*x^2+41*x+2', 'y^2=6*x^6+18*x^5+21*x^4+15*x^3+16*x^2+17*x+10', 'y^2=13*x^6+38*x^5+26*x^4+16*x^3+25*x^2+29*x+28', 'y^2=18*x^6+2*x^5+36*x^4+33*x^3+31*x^2+4*x+46', 'y^2=2*x^6+34*x^5+9*x^4+14*x^3+18*x^2+29*x+28', 'y^2=10*x^6+29*x^5+45*x^4+23*x^3+43*x^2+4*x+46', 'y^2=14*x^6+37*x^5+x^4+46*x^3+31*x^2+26*x+2', 'y^2=23*x^6+44*x^5+5*x^4+42*x^3+14*x^2+36*x+10', 'y^2=19*x^6+27*x^5+46*x^4+33*x^3+28*x^2+18*x+37', 'y^2=3*x^6+27*x^5+25*x^4+7*x^3+13*x^2+7*x+5', 'y^2=31*x^6+21*x^5+18*x^4+20*x^2+31*x+9', 'y^2=14*x^6+11*x^5+43*x^4+6*x^2+14*x+45', 'y^2=43*x^6+45*x^5+39*x^4+17*x^3+33*x^2+36*x+18', 'y^2=27*x^6+37*x^5+7*x^4+38*x^3+24*x^2+39*x+43', 'y^2=22*x^6+11*x^5+7*x^4+13*x^3+2*x^2+17*x+9', 'y^2=16*x^6+8*x^5+35*x^4+18*x^3+10*x^2+38*x+45', 'y^2=40*x^6+43*x^5+x^4+38*x^3+6*x^2+28*x+12', 'y^2=12*x^6+27*x^5+5*x^4+2*x^3+30*x^2+46*x+13', 'y^2=33*x^6+44*x^4+15*x^3+17*x^2+6', 'y^2=36*x^6+2*x^5+29*x^4+9*x^3+11*x^2+29*x+5', 'y^2=39*x^6+10*x^5+4*x^4+45*x^3+8*x^2+4*x+25', 'y^2=36*x^6+32*x^5+4*x^4+44*x^2+6*x+2', 'y^2=39*x^6+19*x^5+20*x^4+32*x^2+30*x+10', 'y^2=17*x^6+22*x^5+10*x^4+14*x^3+34*x^2+42*x+39', 'y^2=38*x^6+16*x^5+3*x^4+23*x^3+29*x^2+22*x+7', 'y^2=27*x^6+19*x^5+23*x^4+14*x^3+27*x^2+33*x+5', 'y^2=41*x^6+x^5+21*x^4+23*x^3+41*x^2+24*x+25', 'y^2=8*x^6+43*x^5+19*x^4+40*x^3+29*x^2+39*x+37', 'y^2=40*x^6+27*x^5+x^4+12*x^3+4*x^2+7*x+44', 'y^2=20*x^6+36*x^5+20*x^3+x+6', 'y^2=18*x^6+34*x^5+19*x^4+34*x^3+12*x^2+34*x+9', 'y^2=43*x^6+29*x^5+x^4+29*x^3+13*x^2+29*x+45', 'y^2=46*x^6+24*x^5+36*x^4+21*x^3+42*x^2+37*x+17', 'y^2=42*x^6+26*x^5+39*x^4+11*x^3+22*x^2+44*x+38', 'y^2=7*x^6+31*x^5+33*x^3+15*x+43', 'y^2=42*x^6+28*x^5+8*x^4+34*x^3+14*x^2+10*x+42', 'y^2=22*x^6+46*x^5+40*x^4+29*x^3+23*x^2+3*x+22', 'y^2=6*x^6+22*x^5+18*x^4+11*x^3+30*x^2+35*x+33', 'y^2=8*x^6+28*x^5+19*x^4+44*x^3+41*x^2+23*x+22', 'y^2=40*x^6+46*x^5+x^4+32*x^3+17*x^2+21*x+16', 'y^2=21*x^6+33*x^5+46*x^4+33*x^3+23*x^2+20*x+17', 'y^2=11*x^6+24*x^5+42*x^4+24*x^3+21*x^2+6*x+38', 'y^2=36*x^6+43*x^5+31*x^4+17*x^3+30*x^2+45*x+11', 'y^2=39*x^6+27*x^5+14*x^4+38*x^3+9*x^2+37*x+8', 'y^2=45*x^6+14*x^5+13*x^4+8*x^3+30*x^2+33*x+3', 'y^2=37*x^6+23*x^5+18*x^4+40*x^3+9*x^2+24*x+15', 'y^2=26*x^6+42*x^5+26*x^4+13*x^3+19*x^2+25*x+43', 'y^2=36*x^6+22*x^5+36*x^4+18*x^3+x^2+31*x+27', 'y^2=46*x^6+25*x^5+4*x^4+27*x^3+29*x^2+x+3', 'y^2=38*x^6+44*x^5+15*x^4+25*x^3+18*x^2+39*x+5', 'y^2=2*x^6+32*x^5+28*x^4+31*x^3+43*x^2+7*x+25', 'y^2=5*x^6+x^5+8*x^4+2*x^3+18*x^2+34*x+15', 'y^2=25*x^6+5*x^5+40*x^4+10*x^3+43*x^2+29*x+28', 'y^2=28*x^6+19*x^5+9*x^4+14*x^3+3*x^2+21*x+41', 'y^2=46*x^6+x^5+45*x^4+23*x^3+15*x^2+11*x+17', 'y^2=13*x^6+3*x^5+15*x^4+x^3+14*x^2+22*x+29', 'y^2=18*x^6+15*x^5+28*x^4+5*x^3+23*x^2+16*x+4', 'y^2=4*x^6+44*x^5+30*x^4+33*x^3+33*x^2+3*x+17', 'y^2=20*x^6+32*x^5+9*x^4+24*x^3+24*x^2+15*x+38', 'y^2=34*x^6+33*x^5+42*x^4+34*x^3+32*x^2+22', 'y^2=29*x^6+24*x^5+22*x^4+29*x^3+19*x^2+16', 'y^2=11*x^6+46*x^5+36*x^4+38*x^3+10*x^2+13*x+6', 'y^2=8*x^6+42*x^5+39*x^4+2*x^3+3*x^2+18*x+30', 'y^2=27*x^6+2*x^5+36*x^4+3*x^3+29*x^2+24*x+26', 'y^2=43*x^6+24*x^5+7*x^4+8*x^3+37*x^2+26*x+35', 'y^2=27*x^6+26*x^5+35*x^4+40*x^3+44*x^2+36*x+34', 'y^2=14*x^6+40*x^5+8*x^4+38*x^3+20*x^2+33*x+25', 'y^2=23*x^6+12*x^5+40*x^4+2*x^3+6*x^2+24*x+31'], 'dim1_distinct': 0, 'dim1_factors': 0, 'dim2_distinct': 1, 'dim2_factors': 1, 'dim3_distinct': 0, 'dim3_factors': 0, 'dim4_distinct': 0, 'dim4_factors': 0, 'dim5_distinct': 0, 'dim5_factors': 0, 'endomorphism_ring_count': 4, 'g': 2, 'galois_groups': ['4T2'], 'geom_dim1_distinct': 1, 'geom_dim1_factors': 2, 'geom_dim2_distinct': 0, 'geom_dim2_factors': 0, 'geom_dim3_distinct': 0, 'geom_dim3_factors': 0, 'geom_dim4_distinct': 0, 'geom_dim4_factors': 0, 'geom_dim5_distinct': 0, 'geom_dim5_factors': 0, 'geometric_center_dim': 2, 'geometric_extension_degree': 2, 'geometric_galois_groups': ['2T1'], 'geometric_number_fields': ['2.0.795.1'], 'geometric_splitting_field': '2.0.795.1', 'geometric_splitting_polynomials': [[199, -1, 1]], 'group_structure_count': 1, 'has_geom_ss_factor': False, 'has_jacobian': 1, 'has_principal_polarization': 1, 'hyp_count': 72, 'is_geometrically_simple': False, 'is_geometrically_squarefree': False, 'is_primitive': True, 'is_simple': True, 'is_squarefree': True, 'is_supersingular': False, 'jacobian_count': 72, 'label': '2.47.a_bp', 'max_divalg_dim': 1, 'max_geom_divalg_dim': 1, 'max_twist_degree': 4, 'newton_coelevation': 2, 'newton_elevation': 0, 'number_fields': ['4.0.632025.1'], 'p': 47, 'p_rank': 2, 'p_rank_deficit': 0, 'poly': [1, 0, 41, 0, 2209], 'poly_str': '1 0 41 0 2209 ', 'primitive_models': [], 'q': 47, 'real_poly': [1, 0, -53], 'simple_distinct': ['2.47.a_bp'], 'simple_factors': ['2.47.a_bpA'], 'simple_multiplicities': [1], 'singular_primes': ['2,-F-3*V+7', '3,49*F+53*V'], 'slopes': ['0A', '0B', '1A', '1B'], 'splitting_field': '4.0.632025.1', 'splitting_polynomials': [[289, 0, -19, 0, 1]], 'twist_count': 2, 'twists': [['2.47.a_abp', '2.4879681.ico_bltmnz', 4]], 'weak_equivalence_count': 4, 'zfv_index': 36, 'zfv_index_factorization': [[2, 2], [3, 2]], 'zfv_is_bass': True, 'zfv_is_maximal': False, 'zfv_plus_index': 2, 'zfv_plus_index_factorization': [[2, 1]], 'zfv_plus_norm': 18225, 'zfv_singular_count': 4, 'zfv_singular_primes': ['2,-F-3*V+7', '3,49*F+53*V']}
-
av_fq_endalg_factors • Show schema
Hide schema
-
id: 35346
{'base_label': '2.47.a_bp', 'extension_degree': 1, 'extension_label': '2.47.a_bp', 'multiplicity': 1}
-
id: 35347
{'base_label': '2.47.a_bp', 'extension_degree': 2, 'extension_label': '1.2209.bp', 'multiplicity': 2}
-
av_fq_endalg_data • Show schema
Hide schema
{'brauer_invariants': ['0', '0', '0', '0'], 'center': '4.0.632025.1', 'center_dim': 4, 'divalg_dim': 1, 'extension_label': '2.47.a_bp', 'galois_group': '4T2', 'places': [['34', '46', '1', '0'], ['43', '46', '1', '0'], ['22', '46', '1', '0'], ['4', '46', '1', '0']]}
-
av_fq_endalg_data • Show schema
Hide schema
{'brauer_invariants': ['0', '0'], 'center': '2.0.795.1', 'center_dim': 2, 'divalg_dim': 1, 'extension_label': '1.2209.bp', 'galois_group': '2T1', 'places': [['22', '1'], ['24', '1']]}