-
av_fq_isog • Show schema
Hide schema
{'abvar_count': 1852, 'abvar_counts': [1852, 3266928, 6341892496, 11700267413184, 21612809881092532, 39961434062272262400, 73885213018523397124708, 136614091208114145650621184, 252599304992529624782446942864, 467056163185867249513372563334128], 'abvar_counts_str': '1852 3266928 6341892496 11700267413184 21612809881092532 39961434062272262400 73885213018523397124708 136614091208114145650621184 252599304992529624782446942864 467056163185867249513372563334128 ', 'angle_corank': 1, 'angle_rank': 1, 'angles': [0.190961148009004, 0.857627814675671], 'center_dim': 4, 'cohen_macaulay_max': 1, 'curve_count': 45, 'curve_counts': [45, 1765, 79764, 3422329, 147017475, 6321648310, 271818080145, 11688205879729, 502592555069772, 21611482100826325], 'curve_counts_str': '45 1765 79764 3422329 147017475 6321648310 271818080145 11688205879729 502592555069772 21611482100826325 ', 'curves': ['y^2=3*x^6+3*x^3+42', 'y^2=22*x^6+16*x^5+23*x^4+37*x^3+22*x^2+28*x+12', 'y^2=21*x^6+7*x^5+34*x^4+12*x^3+3*x^2+31*x', 'y^2=2*x^6+31*x^5+12*x^4+22*x^3+39*x^2+28*x+23', 'y^2=7*x^6+7*x^5+4*x^4+25*x^3+34*x^2+14*x+16', 'y^2=20*x^6+18*x^5+41*x^4+3*x^3+18*x^2+29*x+40', 'y^2=35*x^6+24*x^5+18*x^4+25*x^3+28*x^2+16*x+13', 'y^2=35*x^6+17*x^5+39*x^4+39*x^3+30*x^2+15*x', 'y^2=7*x^6+5*x^5+35*x^4+30*x^3+28*x^2+13*x+30', 'y^2=39*x^6+3*x^5+29*x^4+x^3+34*x^2+14*x+3', 'y^2=34*x^6+37*x^5+5*x^4+35*x^3+4*x^2+4*x', 'y^2=24*x^6+26*x^5+35*x^4+10*x^3+12*x^2+36*x+21', 'y^2=25*x^6+21*x^5+3*x^4+22*x^3+4*x^2+32*x+4', 'y^2=28*x^6+40*x^5+14*x^4+35*x^3+33*x^2+4*x+14', 'y^2=15*x^5+3*x^4+6*x^3+20*x^2+16*x+3', 'y^2=31*x^6+34*x^5+32*x^4+20*x^3+31*x^2+7*x+33', 'y^2=15*x^6+26*x^5+32*x^4+15*x^3+6*x^2+18*x+25', 'y^2=4*x^6+31*x^5+25*x^4+10*x^3+21*x^2+11*x+6', 'y^2=12*x^6+9*x^5+30*x^4+40*x^3+36*x^2+38*x+3', 'y^2=6*x^6+8*x^5+13*x^4+40*x^3+x^2+2*x+14', 'y^2=4*x^6+9*x^5+28*x^4+15*x^3+19*x^2+28*x+27', 'y^2=29*x^6+11*x^5+31*x^4+16*x^3+41*x^2+26*x+24', 'y^2=18*x^6+24*x^5+20*x^4+10*x^3+32*x^2+11*x', 'y^2=18*x^6+15*x^5+29*x^4+38*x^3+38*x^2+24*x+41', 'y^2=41*x^6+41*x^5+21*x^4+10*x^3+20*x^2+22*x+39', 'y^2=18*x^6+22*x^5+41*x^4+21*x^3+15*x^2+4*x+34', 'y^2=8*x^6+7*x^5+38*x^4+29*x^3+33*x^2+27*x+29', 'y^2=32*x^6+31*x^5+11*x^4+22*x^3+40*x^2+15*x+25', 'y^2=22*x^6+3*x^4+22*x^3+15*x^2+17*x+27', 'y^2=3*x^6+3*x^3+34', 'y^2=16*x^6+20*x^5+4*x^4+12*x^3+18*x^2+34*x+22', 'y^2=7*x^6+3*x^5+13*x^4+15*x^3+18*x^2+40*x+31', 'y^2=23*x^6+39*x^5+20*x^4+3*x^3+39*x^2+10*x+17', 'y^2=3*x^6+9*x^3+27', 'y^2=3*x^6+3*x^3+30', 'y^2=6*x^6+18*x^5+36*x^4+28*x^3+11*x^2+10*x+34', 'y^2=7*x^6+7*x^5+23*x^4+26*x^3+21*x^2+8*x+2', 'y^2=29*x^6+15*x^5+25*x^4+42*x^3+32*x^2+26*x+20', 'y^2=36*x^6+22*x^5+13*x^4+16*x^3+2*x^2+25*x+12', 'y^2=9*x^6+36*x^5+13*x^4+28*x^3+7*x^2+10*x+17', 'y^2=8*x^6+17*x^5+16*x^4+26*x^3+3*x^2+4', 'y^2=42*x^6+32*x^5+3*x^4+20*x^3+26*x^2+21*x+21', 'y^2=22*x^6+33*x^5+18*x^4+3*x^3+23*x^2+22*x+12', 'y^2=25*x^6+15*x^5+24*x^4+27*x^3+7*x^2+30*x+6', 'y^2=11*x^5+3*x^4+12*x^3+29*x^2+18*x+18', 'y^2=12*x^6+4*x^4+x^3+9*x^2+33*x+6', 'y^2=4*x^6+33*x^5+13*x^4+30*x^3+34*x^2+16*x+25'], 'dim1_distinct': 0, 'dim1_factors': 0, 'dim2_distinct': 1, 'dim2_factors': 1, 'dim3_distinct': 0, 'dim3_factors': 0, 'dim4_distinct': 0, 'dim4_factors': 0, 'dim5_distinct': 0, 'dim5_factors': 0, 'endomorphism_ring_count': 16, 'g': 2, 'galois_groups': ['4T2'], 'geom_dim1_distinct': 1, 'geom_dim1_factors': 2, 'geom_dim2_distinct': 0, 'geom_dim2_factors': 0, 'geom_dim3_distinct': 0, 'geom_dim3_factors': 0, 'geom_dim4_distinct': 0, 'geom_dim4_factors': 0, 'geom_dim5_distinct': 0, 'geom_dim5_factors': 0, 'geometric_center_dim': 2, 'geometric_extension_degree': 3, 'geometric_galois_groups': ['2T1'], 'geometric_number_fields': ['2.0.19.1'], 'geometric_splitting_field': '2.0.19.1', 'geometric_splitting_polynomials': [[5, -1, 1]], 'group_structure_count': 2, 'has_geom_ss_factor': False, 'has_jacobian': 1, 'has_principal_polarization': 1, 'hyp_count': 47, 'is_geometrically_simple': False, 'is_geometrically_squarefree': False, 'is_primitive': True, 'is_simple': True, 'is_squarefree': True, 'is_supersingular': False, 'jacobian_count': 47, 'label': '2.43.b_abq', 'max_divalg_dim': 1, 'max_geom_divalg_dim': 1, 'max_twist_degree': 12, 'newton_coelevation': 2, 'newton_elevation': 0, 'number_fields': ['4.0.3249.1'], 'p': 43, 'p_rank': 2, 'p_rank_deficit': 0, 'poly': [1, 1, -42, 43, 1849], 'poly_str': '1 1 -42 43 1849 ', 'primitive_models': [], 'q': 43, 'real_poly': [1, 1, -128], 'simple_distinct': ['2.43.b_abq'], 'simple_factors': ['2.43.b_abqA'], 'simple_multiplicities': [1], 'singular_primes': ['2,9*F-10*V-9', '7,-5*F^2-2*F-4', '3,F+7'], 'slopes': ['0A', '0B', '1A', '1B'], 'splitting_field': '4.0.3249.1', 'splitting_polynomials': [[25, -5, -4, -1, 1]], 'twist_count': 6, 'twists': [['2.43.ab_abq', '2.1849.adh_hyu', 2], ['2.43.ac_dj', '2.79507.jw_jzmc', 3], ['2.43.ab_abq', '2.6321363049.qfzo_ecuhifpm', 6], ['2.43.a_dh', '2.6321363049.qfzo_ecuhifpm', 6], ['2.43.c_dj', '2.6321363049.qfzo_ecuhifpm', 6], ['2.43.a_adh', '2.39959630797262576401.abxwgkbaq_cecwpobvtgieueo', 12]], 'weak_equivalence_count': 16, 'zfv_index': 378, 'zfv_index_factorization': [[2, 1], [3, 3], [7, 1]], 'zfv_is_bass': True, 'zfv_is_maximal': False, 'zfv_plus_index': 3, 'zfv_plus_index_factorization': [[3, 1]], 'zfv_plus_norm': 1764, 'zfv_singular_count': 6, 'zfv_singular_primes': ['2,9*F-10*V-9', '7,-5*F^2-2*F-4', '3,F+7']}
-
av_fq_endalg_factors • Show schema
Hide schema
-
id: 31277
{'base_label': '2.43.b_abq', 'extension_degree': 1, 'extension_label': '2.43.b_abq', 'multiplicity': 1}
-
id: 31278
{'base_label': '2.43.b_abq', 'extension_degree': 3, 'extension_label': '1.79507.ey', 'multiplicity': 2}
-
av_fq_endalg_data • Show schema
Hide schema
{'brauer_invariants': ['0', '0', '0', '0'], 'center': '4.0.3249.1', 'center_dim': 4, 'divalg_dim': 1, 'extension_label': '2.43.b_abq', 'galois_group': '4T2', 'places': [['12', '1', '0', '0'], ['2', '1', '0', '0'], ['24', '1', '0', '0'], ['4', '1', '0', '0']]}
-
av_fq_endalg_data • Show schema
Hide schema
{'brauer_invariants': ['0', '0'], 'center': '2.0.19.1', 'center_dim': 2, 'divalg_dim': 1, 'extension_label': '1.79507.ey', 'galois_group': '2T1', 'places': [['14', '1'], ['28', '1']]}